
Joint	Center	for	Satellite	Data	Assimilation	(JCSDA)
JEDI	Academy	– November	14,	2018

Joint	Effort	for	Data	assimilation	
Integration

IODA	subsystem



From	Yannick’s	presentation:

• Interface	to	isolate	science	code	from	data	storage

• Three	levels:
- Long	term	storage	(historic	database)
- Files	on	disk	(one	DA	cycle)
- In	memory	handling	of	observations	(hardware	specific?)

• Two	environments:
- Plotting,	analyzing,	verifying	on	workstation
- DA	and	other	HPC	applications	(MPI,	threads,	GPUs…)

• Goal:	one	interface,	possibly	several	implementations?



Observation	Data	Flow

• For	development	purposes,	
we	have	a	flow	that	places	
UFO	in	parallel	with	the	GSI	
Observer.
• UFO	can	be	checked	by	
running	the	same	data	
through	the	GSI	Observer

• Observation	operators	in	UFO	
(or	the	GSI	Solver)	create	
simulated	observations	from	
model	fields.

• The	original	observations	plus	
the	simulated	observations	
are	passed	onto	the	GSI	
Solver	to	complete	the	
generation	of	the	analysis	
state.

Geovals

• Geovals data	
are	only	used	
for	testing	UFO

• Removes	need	
to	run	a	model
• Separate	from	
the	obs
database



Handling	Observation	Data

• Currently,	we	have	a	prototype	observation	data	store
– Netcdf,	ODB	API
– C++	and	Fortran	interfaces	provided	
– Enables	us	to	have	access	to	small	amounts	of	observation	data	and	
therefore	continue	development	of	the	other	JEDI	subsystems	

• We	require	a	full-fledged	database	implementation	which	can	
handle	large	amounts	of	data	and	operate	in	an	HPC	
environment	(MPI)
– SQL-like	interface

• Now	that	we	have	the	prototype	implementation,	we	can	
switch	our	focus	to	the	long-term	database	implementation



Relationship	to	OOPS

• IODA	is	the	implementation	of	the	following	abstract	
interfaces	in	OOPS

• ObsVector
– ObsVector represents	the	observation	terms	H(x)	and	y	in	the	J(x)	
cost	function

• ObservationSpace
– Set	of	ObsVectors
– Additional	meta-data	about	the	particular	obs type
• Radiosonde	station	ID’s,	satellite	scan	angle	and	scan	position,	etc.



Class	Structure

OOPS	Interface
(Abstract)

IODA	Implementation
(Concrete)



Observation	database	schematic

ObsData

MetaData

Temperature

Moisture

Zonal Wind

Meridional Wind

Latitude

Longitude

Date/Time

Height

Station ID

ObsValue (y)

Locations
IDs
Etc.

ObsError
H(x)

nlocs

nvars



IODA	interface	with	OOPS

• C++
• Access	is	through	the	ObsVector class
– Corresponds	to	ObsData tables	shown	in	he	database	schematic
• ObsValue,	ObsError,	H(x)

• ObsVector methods

– Argument	is	name	of	the	ObsData table	(ObsValue,	H(x),	etc.)
– ObsVector implementation	manages	what	variables	constitute	a	
vector	underneath	the	hood.



IODA	interface	with	UFO

• Fortran
• Access	is	through	the	ObsSpace class
– Corresponds	to	individual	rows	in	the	database	schematic

• ObsSpace methods

– obss argument	is	a	C	pointer	to	an	ObsSpace object
– group	argument	is	a	Fortran	string	holding	the	database	table	name
• Eg.,	“ObsValue”,	“ObsError”,	“MetaData”

– vname argument	is	a	Fortran	string	holding	the	variable	(row)	name
• Eg.,	“air_temperature”,	“latitude”

– vect argument	is	a	Fortran	1D	array	(vector)	of	doubles



IODA-UFO	Fortran	interface	example

• It	is	the	client’s	responsibility	to	allocate	memory	for	the	
vector	data

• Rows	of	the	tables	are	nlocs in	length
• Radiance	example:


