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From	Yannick’s	presentation:

• Interface	to	isolate	science	code	from	data	storage

• Three	levels:
- Long	term	storage	(historic	database)
- Files	on	disk	(one	DA	cycle)
- In	memory	handling	of	observations	(hardware	specific?)

• Two	environments:
- Plotting,	analyzing,	verifying	on	workstation
- DA	and	other	HPC	applications	(MPI,	threads,	GPUs…)

• Goal:	one	interface,	possibly	several	implementations?



Observation	Data	Flow

• For	development	purposes,	
we	have	a	flow	that	places	
UFO	in	parallel	with	the	GSI	
Observer.
• UFO	can	be	checked	by	
running	the	same	data	
through	the	GSI	Observer

• Observation	operators	in	UFO	
(or	the	GSI	Solver)	create	
simulated	observations	from	
model	fields.

• The	original	observations	plus	
the	simulated	observations	
are	passed	onto	the	GSI	
Solver	to	complete	the	
generation	of	the	analysis	
state.

Geovals

• Geovals data	
are	only	used	
for	testing	UFO

• Removes	need	
to	run	a	model
• Separate	from	
the	obs
database



Handling	Observation	Data

• Currently,	we	have	a	prototype	observation	data	store
– Netcdf,	ODB	API
– C++	and	Fortran	interfaces	provided	
– Enables	us	to	have	access	to	small	amounts	of	observation	data	and	
therefore	continue	development	of	the	other	JEDI	subsystems	

• We	require	a	full-fledged	database	implementation	which	can	
handle	large	amounts	of	data	and	operate	in	an	HPC	
environment	(MPI)
– SQL-like	interface

• Now	that	we	have	the	prototype	implementation,	we	can	
switch	our	focus	to	the	long-term	database	implementation



Relationship	to	OOPS

• IODA	is	the	implementation	of	the	following	abstract	
interfaces	in	OOPS

• ObsVector
– ObsVector represents	the	observation	terms	H(x)	and	y	in	the	J(x)	
cost	function

• ObservationSpace
– Set	of	ObsVectors
– Additional	meta-data	about	the	particular	obs type
• Radiosonde	station	ID’s,	satellite	scan	angle	and	scan	position,	etc.



Class	Structure

OOPS	Interface
(Abstract)

IODA	Implementation
(Concrete)



Observation	database	schematic
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IODA	interface	with	OOPS

• C++
• Access	is	through	the	ObsVector class
– Corresponds	to	ObsData tables	shown	in	he	database	schematic
• ObsValue,	ObsError,	H(x)

• ObsVector methods

– Argument	is	name	of	the	ObsData table	(ObsValue,	H(x),	etc.)
– ObsVector implementation	manages	what	variables	constitute	a	
vector	underneath	the	hood.



IODA	interface	with	UFO

• Fortran
• Access	is	through	the	ObsSpace class
– Corresponds	to	individual	rows	in	the	database	schematic

• ObsSpace methods

– obss argument	is	a	C	pointer	to	an	ObsSpace object
– group	argument	is	a	Fortran	string	holding	the	database	table	name
• Eg.,	“ObsValue”,	“ObsError”,	“MetaData”

– vname argument	is	a	Fortran	string	holding	the	variable	(row)	name
• Eg.,	“air_temperature”,	“latitude”

– vect argument	is	a	Fortran	1D	array	(vector)	of	doubles



IODA-UFO	Fortran	interface	example

• It	is	the	client’s	responsibility	to	allocate	memory	for	the	
vector	data

• Rows	of	the	tables	are	nlocs in	length
• Radiance	example:


