Joint Effort for Data assimilation
Integration

IODA subsystem

Joint Center for Satellite Data Assimilation (JCSDA)
JEDI Academy — November 14, 2018




Requirements and Goals

From Yannick’s presentation:

* Interface to isolate science code from data storage

* Three levels:

— Long term storage (historic database)
— Files on disk (one DA cycle)

- In memory handling of observations (hardware specific?)

* Two environments:
— Plotting, analyzing, verifying on workstation
— DA and other HPC applications (MPI, threads, GPUs...)

* Goal: one interface, possibly several implementations?



Observation Data Flow

* For development purposes,

we have a flow that places
GSI UFO in parallel with the GSI
UFO
Observer Observer.
* UFO can be checked by

running the same data

* Geovals data through the GSI Observer

N are only used * Observation operators in UFO
Simulated Obs for testing UFO (or the GSI Solver) create
* Removes need simulated observations from
to run a model model fields.
e Separate from * The original observations plus
Sg’ﬁir the obs the simulated observations
database are passed onto the GSI

Solver to complete the

generation of the analysis
@ state.



Handling Observation Data

* Currently, we have a prototype observation data store
— Netcdf, ODB API

— C++ and Fortran interfaces provided

— Enables us to have access to small amounts of observation data and
therefore continue development of the other JEDI subsystems

* We require a full-fledged database implementation which can
handle large amounts of data and operate in an HPC
environment (MPI)

— SQL-like interface

* Now that we have the prototype implementation, we can
switch our focus to the long-term database implementation



Relationship to OOPS

* |ODA is the implementation of the following abstract
interfaces in OOPS

* ObsVector
— ObsVector represents the observation terms H(x) and y in the J(x)
cost function
* ObservationSpace

— Set of ObsVectors
— Additional meta-data about the particular obs type

» Radiosonde station ID’s, satellite scan angle and scan position, etc.



oops::ObsVector<MODEL> oops::ObservationSpace<MODEL> OOPS Interface
(Abstract)
data_ obsdb
| I
S D
\ IODA /
/
T ’
DI E Yertor ioda::ObsSpace
nvars_ nlocs_ .
obsvars . _
- obsdb._ : IODA Implementation
V‘lh:e“— l : (Concrete)
I ‘

: |
; \ |
@Vector@ Obs Database




Observation database schematic

ObsData

MetaData

Temperature

Moisture

Zonal Wind

Meridional Wind

Latitude

Longitude

Date/Time

Height

Station ID

nlocs

ObsError
ObsValue (y)

Locations
IDs
Etc.



|IODA interface with OOPS

* C++

* Access is through the ObsVector class

— Corresponds to ObsData tables shown in he database schematic
* ObsValue, ObsError, H(x)

e ObsVector methods

volid read(const std::string &);
vold save(const std::string &) const;

— Argument is name of the ObsData table (ObsValue, H(x), etc.)

— ObsVector implementation manages what variables constitute a
vector underneath the hood.



|IODA interface with UFO

* Fortran

* Access is through the ObsSpace class

— Corresponds to individual rows in the database schematic

* ObsSpace methods

1nteger function obsspace_get_nlocs(obss)
subroutine obsspace_get_db(obss, group, vname, vect)
subroutine obsspace_put_db(obss, group, vname, vect)

— obss argument is a C pointer to an ObsSpace object

— group argument is a Fortran string holding the database table name
* Eg., “ObsValue”, “ObsError”, “MetaData”

— vname argument is a Fortran string holding the variable (row) name
* Eg., “air_temperature”, “latitude”

— vect argument is a Fortran 1D array (vector) of doubles



|IODA-UEQO Fortran interface example

* |tis the client’s responsibility to allocate memory for the
vector data

* Rows of the tables are nlocs in length
* Radiance example:

real(kind_real), allocatable :: Sensor_Zenith_Angle(:)
real(kind_real), allocatable :: Scan_Angle(:)
integer :: nlocs

nlocs = obsspace_get_nlocs(obss) I ALl table rows are nlocs in length
(Sensor_Zenith_Angle(nlocs))
(Scan_Position(nlocs))

call obsspace_get_db(obss, "MetaData", "Sat_Zenith_Angle", Sensor_Zenith_Angle)
call obsspace_get_db(obss, "MetaData", "Scan_Angle", Scan_Angle)

(Sensor_Zenith_Angle)
(Scan_Angle)



