
Collaborative Tools 2

Collaborative Tools 2

‣ Agile Project Management and Collaborative Workflow
✦git/GitHub
✦git-flow
✦ZenHub

‣ Documentation
✦Doxygen
✦JCSDA Wiki

git/GitHub

git - command line tool
(version control)

GitHub - Web-based
repository management

(branches, releases)

Changes to develop, master
branches handled via

pull requests

GitHub Teams

git/GitHub (more JEDI tips)

‣ Follow git-flow naming conventions
✦ Web hook will scold you if you don’t
✦ Git-hooks also available to prevent noncompliant pushes
✦ Most development work occurs in feature branches
✦ git-flow extension can be installed with usual installers

(homebrew, apt-get, yum)
✦ Example: brew install git-flow

‣ Don’t push directly to develop or master
✦ Changes to these branches are handled via pull requests

‣ Use git-LFS for large files

‣ What about forks?
✦ For now, developers can work off the central repo
✦ As the project grows, each parter/collaborator institution will

maintain a fork (merge with central repo as needed)
✦ Forking may also be useful for public releases

Life Cycle of a Feature branch

1) Enable git flow for the repo
‣ git flow init -d

2) Start the feature branch
‣ git flow feature start newstuff
‣ Creates a new branch called feature/newstuff that branches off of develop

3) Push it to GitHub for the first time
‣ Make changes and commit them locally
‣ git flow feature publish newstuff

4) Additional (normal) commits and pushes as needed
‣ git commit -a
‣ git push

5) Bring it up to date with develop (to minimize big changes on the ensuing pull request)
‣ git checkout develop
‣ git pull origin develop
‣ git checkout feature/newstuff
‣ git merge develop

6) Finish the feature branch (don’t use git flow feature finish)
‣ Do a pull request on GitHub from feature/newstuff to develop
‣ When successfully merged the remote branch will be deleted
‣ git remote update -p
‣ git branch -d feature/newstuff

What if I can’t install
git-flow?

 Just be sure to use the
proper naming and

branching conventions

feature/mybranch
release/mybranch
bugfix/mybranch
hotfix/mybranch

Resources: Git-Flow

JEDI Git Flow page
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/
en/latest/developer/developer_tools/getting-started-with-gitflow.html

The Git Flow manifesto (all you need to know about the philosophy):
http://nvie.com/posts/a-successful-git-branching-model/

Git Flow cheat sheet:
https://danielkummer.github.io/git-flow-cheatsheet/

Git avh (a fork of the original, with added features):
https://github.com/petervanderdoes/gitflow-avh

Atlassian git-flow tutorial (philosophy and application):
https://www.atlassian.com/git/tutorials/comparing-workflows/
gitflow-workflow

https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/developer/developer_tools/getting-started-with-gitflow.html
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/developer/developer_tools/getting-started-with-gitflow.html
http://nvie.com/posts/a-successful-git-branching-model/
https://danielkummer.github.io/git-flow-cheatsheet/
https://github.com/petervanderdoes/gitflow-avh
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

Using Git-LFS

1) Extension to git
‣ brew install git-lfs

2) See if git-lfs is already enabled for that repo
‣ git lfs track

3) If not already sufficient, then add appropriate tracking patterns
‣ git lfs install # only if step 2 returns nothing
‣ git lfs track *.nc4

4) Add your large files to the repo

5) Make sure your files and patterns are tracked by git
‣ git add .gittattributes
‣ git add * # new files

6) commit, push, pull, fetch, clone and proceed as you would with
any other repo

Resources: Git-LFS

JEDI Git-LFS page
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-
hosted.com/en/latest/developer/developer_tools/gitlfs.html

GitHub’s Help page:
https://help.github.com/articles/about-git-large-file-storage/

Binaries available for download on:
https://git-lfs.github.com

Or, on a Mac:

brew install git-lfs

Installation? Already installed in the JEDI singularity container

Tutorial:
https://github.com/git-lfs/git-lfs/wiki/Tutorial

Using ZenHub

Install browser extension
from http://zenhub.com

to see ZenHub tab on
each repo

available for
Chrome, Firefox

Using ZenHub

All GitHub Issues and pull
requests appear on the

Zenhub boards

All ZenHub issues/tasks
appear as GitHub issues

ZenHub Issues/Tasks

Suggestion:
1 unit = 1/2 day
dedicated work

ZenHub: Milestones and Epics

‣ Milestones (Sprints)
✦Short-term (~ 2 weeks)
✦Focused work, often on 1-2 repos
✦Deliverables = specific functionality/features

‣ Epics
✦Long-term (indefinite)
✦Typically span multiple repos
✦Deliverables = releases, guiding vision

Project boards include filters to view only issues associated with Milestones,
Epics or other attributes (assignee, label, repo, release…)

ZenHub: Sprint Retrospective

Sprint Retrospectives
and other agile

workflow components
(Sprint Review,

Release Planning, etc)
are best done face-

to-face, but one could
in principle dedicate
an issue or a pipeline

to solicit further
perspectives

ZenHub: Burndown chart

ZenHub: Release Report

Resources: ZenHub/GitHub

ZenHub Guides
https://www.zenhub.com/guides

Lots of Great Github Cheat Sheets
https://education.github.com/git-cheat-sheet-education.pdf
https://jan-krueger.net/git-cheat-sheet-extended-edition
https://patrickzahnd.ch/uploads/git-transport-v1.png

Extensive GitHub documentation & tutorials
https://help.github.com

https://www.zenhub.com/guides
https://education.github.com/git-cheat-sheet-education.pdf
https://jan-krueger.net/git-cheat-sheet-extended-edition
https://patrickzahnd.ch/uploads/git-transport-v1.png
https://help.github.com

Doxygen

Used in JEDI for:

‣ Documenting functions and subroutines (C++ and F90)

‣ Documenting classes and structures (C++ and F90)

‣ Viewing namespaces and modules

‣ Generating Class Hierarchies

‣ Generating Call diagrams

‣ Any other documentation that involves specific blocks of code

Whenever you add code to any JEDI Repo, please
document it with Doxygen

Doxygen Implementation Plan

‣ User/Developers (this means you!)
✦Please place appropriate Doxygen comments in source files
✦ (optionally) test functionality by compiling with Doxygen config files

provided by JEDI team (feel free to customize, but please don’t
commit your changes)

- Find Doxyfile (the plan is to have one in the Documents directory
of every repo)

> doxygen
- View results in html directory

‣ JEDI Core Team
✦Will supply the Doxyfile config files
✦Will publish html files for develop and master versions of repos

(generated automatically, triggered by pull requests)
✦Tagged versions linked to releases
✦Please be patient - We’re still working on this

Documenting Fortran Source Code

! ! ——
!> \brief Example function
!!
!! \details **myfunction()** takes a and b as arguments and miraculously creates c.
!! I could add many more details here if I chose to do so. I can even make a list:
!! * item 1
!! * item 2
!! * item 3
!!
!! \date A long, long, time ago: Created by L. Skywalker (JCSDA)
!!
!! \warning This isn't a real function!
!!
subroutine myfunction(a, b, c)
 integer, intent(in) :: a !< this is one input parameter
 integer, intent(in) :: b !< this is another
 real(kind=kind_rea), intent(out) :: c !< and this is the output
 [...]

Documenting C++ Source Code

// ---
/*! \brief Example function
*
* \details **myfunction()** takes a and b as arguments and miraculously creates c.
* I could add many more details here if I chose to do so. I can even make a list:
* * item 1
* * item 2
* * item 3
*
* \param[in] a this is one input parameter
* \param[in] b this is another
* \param[out] c and this is the output
*
* \date A long, long, time ago: Created by L. Skywalker (JCSDA)
*
* \warning This isn't a real function!
*
*/
void myfunction(int& a, int& b, double& c) {
 [...]

Useful Doxygen Commands

‣ \brief

‣ \details

‣ \param

‣ \return

‣ \author

‣ \date

‣ \note

‣ \attention

‣ \warning

‣ \bug

‣ \class <name> [<header-file>]

‣ \mainpage

‣ \f$ … \f$ (inline formula)

‣ \f[… \f] (formula block)

‣ \em (or * … *)

‣ \sa (see also)

‣ \typedef

‣ \todo

‣ \version

‣ \namespace

‣ … (url)

‣ \image

‣ \var

‣ \throws (exception description)

Many more described here:

https://www.stack.nl/~dimitri/doxygen/manual/commands.html

Doxygen Example

To see (and play with) example
Doxygen output generated for

fv3-bundle
Go to

http://academy.jcsda.org/nov2018

And select the appropriate menu item

http://academy.jcsda.org/nov2018

Sample output: “man page”

Corresponding code

// ---
/*! \brief Interpolation test
 *
 * \details **testStateInterpolation()** tests the interpolation for a given
 * model. The conceptual steps are as follows:
 * 1. Initialize the JEDI State object based on idealized analytic formulae
 * 2. Interpolate the State variables onto selected "observation" locations
 * using the getValues() method of the State object. The result is
 * placed in a JEDI GeoVaLs object
 * 3. Compute the correct solution by applying the analytic formulae directly
 * at the observation locations.
 * 4. Assess the accuracy of the interpolation by comparing the interpolated
 * values from Step 2 with the exact values from Step 3
 *
 * The interpolated state values are compared to the analytic solution for
 * a series of **locations** which includes values optionally specified by the
 * user in the "StateTest" section of the config file in addition to a
 * randomly-generated list of **Nrandom** random locations. Nrandom is also
 * specified by the user in the "StateTest" section of the config file, as is the
 * (nondimensional) tolerence level (**interp_tolerance**) to be used for the tests.
[…]

Corresponding code (cont.)

[…]
 *
 * This is an equation:
 * \f[\zeta = \left(\frac{x-x_0}{\lambda}\right)^{2/3} \f]
 *
 * Relevant parameters in the **State* section of the config file include
 *
 * * **norm-gen** Normalization test for the generated State
 * * **interp_tolerance** tolerance for the interpolation test
 *
 * \date April, 2018: M. Miesch (JCSDA) adapted a preliminary version in the
 * feature/interp branch
 *
 * \warning Since this model compares the interpolated state values to an exact analytic
 * solution, it requires that the "analytic_init" option be implemented in the model and
 * selected in the "State.StateGenerate" section of the config file.
 */

Doxygen Installation (Mac)

> brew install doxygen

You may be prompted to also install Doxywizard and
Graphviz - we recommend you say yes to both… If Graphviz
does not install for some reason, you can install it manually:

> brew install graphviz

This puts dot in /usr/local/bin
You’ll need this for generating graphs

Doxygen Resources

JEDI Doxygen page

https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-
hosted.com/en/latest/developer/developer_tools/doxygen.html

Doxygen Users Manual
http://www.stack.nl/~dimitri/doxygen/manual/index.html

Installation? Already installed in the JEDI singularity container

Binaries available for download on:
http://www.stack.nl/~dimitri/doxygen/download.html

Or, on a Mac:

brew install doxygen

Other documentation

In a few cases, other sorts of
documentation (often pdf) may
be available in the Documents
directory of a repo

Example: oops

Generally, we plan to link to
these pdfs from the Doxygen
pages

JEDI Wiki

Warning: Less polished than ReadtheDocs
(no guarantee that everything is up to date)

✦Targeted at developers
✦Discussion of current progress, issues
✦Resources for code sprints and other events

JEDI Wiki

JEDI Wiki: Weekly Meeting Notes

