
Joint Center for Satellite Data Assimilation (JCSDA)

The Joint Effort for Data assimilation Integration

Observation Operators
(Unified Forward Operators, UFO)

Unified Forward Operators (UFO)

• Main idea: have forward operators as independent from the
models as possible, so the “unified” forward operators can be
easily shared between different models

• Grid/model-specific part of the observation operator is
decoupled from the rest of the observation operator

• Example: “full” observation operator !"#$$ (that takes full
state on input) that can be written as

!"#$$ %"#$$ = ! '() %"#$$ = !(%$+,)
where '() is horizontal and time interpolation (to observation

lat-lon-time) operator

Forward operator: interpolation and UFO

!"#$$ %"#$$ = ! '() %"#$$ = !(%$+,)

%"#$$ is full model state (State)

%$+, = '() %"#$$ is model state interpolated horizontally and in time to
observation locations (Geographic Values at Locations; GeoVaLs)

! %$+, = !"#$$ %"#$$ is model equivalent in the observation space (ObsVector)

'() : horizontal interpolator; called getValues;
implemented in the model (Dan’s talk
tomorrow)

! : observation operator (after horizontal
interpolation);
implemented in UFO, used by different models

Interpolated model state (GeoVaLs)

• GeoVaLs are vertical profiles of requested model variables at
observation x-y-t location. Forward operator defines which
variables it needs from the model to compute H(x)).

• Examples:
– radiances: vertical profiles of t, q, ozone, pressure; surface

variables: wind, SST, land properties, etc.
– radiosondes/aircrafts: vertical profiles of pressure (to do vertical

interpolation), t, u, v, q
– sea ice concentration retrieval: sea ice concentrations for

different ice thickness categories
– SST retrieval: SST (observation operator becomes an identity in

this case)

Implementing new observation operator in UFO

One needs to implement:
• Setup routine:

– define which variables observation operator needs from the
model;

– define which observation “variables” will be calculated in H(x)
(channels list for radiances, “variables” list for conventional
observations (e.g. t, u, v))

• Observation operator routine
– Input: GeoVaLs !"#$ (interpolated model vertical profiles)
– Output: ObsVector %(!"#$) (model equivalent in the

observation space)
– Observation operator also has access to information from

ObsSpace (metadata: e.g., observation pressure for radiosonde,
scan angle for radiances, etc)

Radiosonde simple example: setup routine

subroutine conventional_profile_setup_(self, c_conf)

class(ufo_conventional_profile), intent(inout) :: self

...

!> "variables" in obsvector: just t

self%varout(1) = 'air_temperature'

!> variables we need from the model: t and pressure for vertical interpolation

self%varin(1) = "virtual_temperature"

self%varin(2) = "atmosphere_ln_pressure_coordinate"

...

end subroutine conventional_profile_setup_

subroutine conventional_profile_simobs_(self, geovals, hofx, obss)

type(ufo_geovals), intent(in) :: geovals

real(c_double), intent(inout) :: hofx(:)

real(kind_real), dimension(:), allocatable :: obspressure

type(ufo_geoval), pointer :: presprofile, profile

! Get pressure profiles from geovals

call ufo_geovals_get_var(geovals, "atmosphere_ln_pressure_coordinate", &

presprofile)

! Get the observation vertical coordinates

call obsspace_get_db(obss, "MetaData", "air_pressure", obspressure)

! Calculate the vert interpolation weights, and interpolate from

! geovals to observational vert location into hofx

do iobs = 1, nlocs

call vert_interp_weights(presprofile%nval, log(obspressure(iobs)/10.), &

presprofile%vals(:,iobs), wi, wf)

call vert_interp_apply(profile%nval, profile%vals(:,iobs), hofx(iobs), wi, wf)

enddo

end subroutine conventional_profile_simobs_

Radiosonde simple example: observation operator

Implementing tangent-linear and adjoint observation
operator

One needs to implement:
• Setup routine
• Set trajectory routine: calculates the Jacobian ! = #$%

$& &'&(
– Input: GeoVaLs)*

• TL observation operator routine
– Input: GeoVaLs +) (interpolated model vertical profiles)
– Output: ObsVector !+) (model equivalent in the observation

space)
• AD observation operator routine

– Input: ObsVector +, (model equivalent in the observation
space)

– Output: GeoVals !-+, (interpolated model vertical profiles)

Setup of TL/AD observation operator

• TL/AD setup: as nonlinear observation operator, needs to define

model variables that are needed to compute tangent linear and

adjoint.

• Model variables can differ from the ones in nonlinear observation

operator. For trajectory GeoVaLs, nonlinear observation operator

variables are used. For TL/AD GeoVaLs one needs to specify

variables that need to be changed in assimilation.

• Example: radiosonde observations don’t change model pressure.

Pressure needs to be part of nonlinear observation operator

variables so interpolation can be performed, but don’t need to be

perturbed as part of an adjoint or passed in tangent-linear.

Implementing tangent-linear and adjoint observation
operator

• Set trajectory routine: calculates the Jacobian ! =
#$%

$& &'&(
– Input: GeoVaLs)* (variables specified in nonlinear obs operator)

• TL observation operator routine
– Input: GeoVaLs +) (variables specified in TL/AD)
– Output: ObsVector !+)

• AD observation operator routine
– Input: ObsVector +,
– Output: GeoVals !-+, (variables specified in TL/AD)

type, extends(ufo_basis_tlad) :: ufo_conventional_profile_tlad

private

real(kind_real), allocatable :: wf(:) ! for interpolation weights

integer, allocatable :: wi(:)

...

end type ufo_conventional_profile_tlad

Radiosonde simple example: datatype to store
trajectory

Radiosonde simple example: set trajectory

subroutine conventional_profile_tlad_settraj_(self, geovals, obss)

class(ufo_conventional_profile_tlad), intent(inout) :: self

! Get pressure profiles from geovals

call ufo_geovals_get_var(geovals, "atmosphere_ln_pressure_coordinate", &

presprofile)

! Get the observation vertical coordinates

call obsspace_get_db(obss, "MetaData", "air_pressure", obspressure)

! Calculate the interpolation weights

do iobs = 1, self%nlocs

call vert_interp_weights(presprofile%nval, log(obspressure(iobs)/10.), &

presprofile%vals(:,iobs), self%wi(iobs), &

self%wf(iobs))

enddo

end subroutine conventional_profile_tlad_settraj_

Radiosonde simple example: TL operator

subroutine conventional_profile_simobs_tl_(self, geovals, hofx, obss)

class(ufo_conventional_profile_tlad), intent(in) :: self

! Get profile for temperature geovals

call ufo_geovals_get_var(geovals, ”virtual_temperature", profile)

! Interpolate from geovals to observational location into hofx

do iobs = 1, self%nlocs

call vert_interp_apply_tl(profile%nval, profile%vals(:,iobs), &

hofx(iobs), self%wi(iobs), self%wf(iobs))

enddo

end subroutine conventional_profile_simobs_tl_

In ufo repository (to get the latest update):
git checkout develop
git pull
git checkout <your-branch-name>
git merge develop

Practical 2: Improving radiosonde UFO

• TODO: improve “conventional profile” (we’ll test on

radiosonde) code to be able to assimilate multiple

observation “variables” (t, u, v).

• The code you’re provided only assimilates one “variable” (t).

• You’ll need to change conventional_profile_simobs_ routine

in ufo/src/ufo/basis/ufo_conventional_profile_mod.F90 to

calculate hofx for multiple variables.

Adding new variables to nonlinear radiosonde
operator

• Setup routine is already updated to read all variables that need to
be assimilated from the config file.

• You can test your code by running ctest --VV -R ufo_radiosonde_opr
• For the config used in this test see

ufo/test/testinput/radiosonde.yaml
– Section ”variables” currently only specifies air_temperature, you’d

need to add eastward_wind and northward_wind to the list of
variables when you test your code on multiple variables

– This test compares norm !"#$(&(')) of H(x) computed by UFO to
the norm specified in the config file (section “rmsequiv”). For
benchmark, we use GSI computed H(x) that you can find in file
ioda/test/testinput/atmosphere/sondes_obs_2018041500_m.nc4. If
you change the list of variables to be assimilated, the norm of H(x) will
change too. Python script ufo/tools/print_gsi_norm.py might be useful
to compute the GSI norm for t, u, v.

ObsTypes:
- ObsType: Radiosonde
ObsData:
ObsDataIn:
obsfile: Data/sondes_obs_2018041500_m.nc4

ObsDataOut:
obsfile: Data/sondes_obs_2018041500_m_out.nc4

variables:
- air_temperature
GeoVaLs:
norm: 8471.883687854357
random: 0
filename: Data/sondes_geoval_2018041500_m.nc4

ObsFilters:
- Filter: Background Check
variable: air_temperature
threshold: 3.0

rmsequiv: 242.21818
tolerance: 1.0e-03 # in % so that corresponds to 10^-5

Adding new variables to TL/AD observation operator

• Once you’ve implemented nonlinear observation operator for
multiple variables and changed your config, all UFO tests
(including TL/AD) should pass,

• However, you will still need (similar) changes for TL/AD to
make variational assimilation work with all observations. The
changes would be in routines
conventional_profile_simobs_tl_ and
conventional_profile_simobs_ad_ in
ufo/src/ufo/basis/ufo_conventional_profile_tlad_mod.F90

