
Joint	Center	for	Satellite	Data	Assimilation	(JCSDA)	

The	Joint	Effort	for	Data	assimilation	Integration	
	

Object	Oriented	Programming	

Very	brief	introduction	to	object	oriented	programming	
	
Concepts	that	are	the	most	useful	to	work	with	JEDI	
	
Learning	all	the	subtleties	of	OOP	can	take	years		

An	object	is	an	instance	of	a	class,	it	contains	data	and	methods	
	
The	data	part	of	a	class	is	most	of	the	time	private	(ensure	
encapsulation)	
	
Methods	are	instructions	sent	to	objects	of	a	class	to	perform	
actions	(often	using	the	data)	
	
Methods	can	be	public	or	private	(or	protected)	
	
The	interface	stays,	the	implementation	can	change	

Subclasses	can	be	defined	from	a	base	class	
-  A	subclass	inherits	the	data	and	methods	from	its	parent	class	
-  A	subclass	can	add	its	own	data	and	methods	
-  A	subclass	can	overwrite	(specialize)	an	inherited	method	
	
Base	classes	are	very	useful	for	
-  Factorizing	common	code	between	subclasses	
-  Defining	common	interfaces	(abstract	base	class)	
	
It	is	very	common	to	hold	objects	whose	subclass	is	not	known	in	
pointers	to	the	base	class	
-  Use	smart	pointers	to	avoid	memory	leaks	
-  Use	factories	to	create	objects	based	on	input	parameters	
	
Each	object	carries	its	methods	so	the	appropriate	one	will	be	called	

Deep	inheritance	structures	are	usually	not	a	good	idea	
-  There	are	often	simpler	ways	to	solve	the	problem	(composition)	
-  It	is	not	efficient	(resolving	of	virtual	tables)	
-  They	introduce	too	much	“coupling”	
	
The	deepest	inheritance	tree	in	OOPS	(Minimizer)	has	two	levels	
-  First	level	sets	the	RHS	(primal,	dual,	saddle	point)	
-  Second	level	to	select	the	actual	minimization	algorithm	
	
An	object	of	a	subclass	can	be	passed	anywhere	an	object	from	a	
parent	class	is	expected	(there	is	no	exception	to	this	rule)	
	
If	exceptions	(if	statements	to	determine	the	subclass)	are	needed,	
inheritance	is	not	the	right	approach	

class CovarianceMatrix { !
 public: !
 CovarianceMatrix(const Geometry &, const Configuration &); !
 ~CovarianceMatrix(); !
 virtual Increment multiply(const Increment &) const =0; !
} !
!
class SpectralCovariance : public CovarianceMatrix { !
 public: !
 CovarianceMatrix(const Geometry &, const Configuration &); !
 ~CovarianceMatrix(); !
 Increment multiply(const Increment &) const; !
} !
!
class WaveletCovariance : public CovarianceMatrix { !
 public: !
 CovarianceMatrix(const Geometry &, const Configuration &); !
 ~CovarianceMatrix(); !
 Increment multiply(const Increment &) const; !
}	

class State {} !
!
class OceanState : public State {} !
!
class AtmosphereState : public State {}	

class Model { !
 void forecast(State &, const Duration) const =0; !
} !
!
class OceanModel : public Model { !
 void forecast(State &, const Duration) const; !
} !
!
class AtmosphereModel : public Model { !
 void forecast(State &, const Duration) const; !
} !

class Model { !
 void forecast(State &, const Duration) const =0; !
} !

Inheritance	is	not	for	everything!	

module generic_min
 interface min
 module procedure min_int, min_real
 end interface

contains

 function min_int(x, y) result (z)
 integer x, y, z
 if (x<y) then
 z = x
 else
 z = y
 endif
 end function min_int

 function min_real(x, y) result (z)
 real x, y, z
 if (x<y) then
 z = y
 else
 z = x
 endif
 end function min_real
end module generic_min

It	is	possible	to	write	generic	
subroutines	or	functions	in	Fortran	
	
However,	the	code	is	repeated	for	
each	implementation	

template<class T>
T min(const T x, const T y) {
 if (x < y) {
 return x;
 } else {
 return y;
 }
}

In	C++	the	code	is	not	repeated:	

The	advantage	becomes	obvious	
when	the	function	is	long	and	
complex:	4D-Var	cost	function…	

Templates	in	C++,	“duck-typing”	in	python,	nothing	in	Fortran	
	
	OOPS/JEDI	uses	generic	programming	more	than	inheritance	
	
The	technique	of	TRAITS	is	used	to	define	a	coherent	set	of	classes:	

struct QgTraits {
 typedef qg::GeometryQG Geometry;
 typedef qg::StateQG State;
 typedef qg::ModelQG Model;
 typedef qg::IncrementQG Increment;
 typedef qg::ErrorCovarianceQG Covariance;
// this example is incomplete
}

Actual	classes	 Names	used	in	JEDI	

One	class	=	One	responsibility	
	The	purpose	of	a	class	should	fit	in	one	(simple)	sentence	

	
	
Interfaces	should	be	easy	to	use	correctly,	difficult	to	use	incorrectly	

	They	should	make	sense	for	somebody	who	knows	the	domain	

Unstructured	
Code	

Procedural	
Code	

Object	
Oriented	

Functional	
Programming	

GOTO	 IF	 Variables	

Each	new	programming	model	removes	the	most	common	source	of	bugs	in	the	
previous	one	

