
Collaborative Tools

‣ Agile Project Management and Collaborative Workflow
✦git/GitHub
✦git-flow
✦ZenHub

‣ Documentation
✦Sphinx/ReadTheDocs (high-level manuals, how-to’s, etc)
✦Doxygen (low-level code details)
✦JEDI Wiki

http://wookiepedia.com

Mark Miesch (JCSDA)
And the JEDI Core Team
JEDI Academy – 10-13 June, 2019

Boulder, CO

The Way of a JEDI

‣ Collaborative

✦ A Joint Center (JCSDA)
- Partners, collaborators, stakeholders, community

✦ A Joint Effort (JEDI)
- Distributed team of software developers, with

varying objectives and time commitments
‣ Agile

✦Innovative

✦Flexible (future-proof)

✦Responsive to users and developers

✦Continuous delivery of functional software

Part I: Agile Tools

‣ git/GitHub
✦ Version control
✦ Enhancements and bug fixes immediately available to

distributed community of developers
✦Code review, issue tracking
✦Community exports (Code distribution)

…and imports (ecbuild, eckit, fckit)

‣ Git-Flow
✦ Innovation
✦ Continuous Delivery

‣ ZenHub
✦ Agile project management
✦ Enhances GitHub’s issue tracking and code review

functionality

git/GitHub

git - command line tool
(version control)

GitHub - Web-based
repository management

(branches, releases)

Changes to develop, master
branches handled via

pull requests

GitHub Teams

GitHub

git/GitHub (JEDI tips)

‣ Work with JEDI bundles
✦Clone bundle repo
✦Let ecbuild do the rest
✦If that doesn’t work, read the README file
✦Get in the habit of running make update after ecbuild
✦Edit the CMakeLists.txt file to use your local version

#ecbuild_bundle(PROJECT ufo GIT "https://github.com/JCSDA/ufo.git" BRANCH develop UPDATE)
ecbuild_bundle(PROJECT ufo GIT “https://github.com/JCSDA/ufo.git BRANCH feature/mystuff)

‣ Cache your GitHub credentials

git config --global credential.helper 'cache --timeout=3600'

https://github.com/JCSDA/ufo.git

Git-LFS

‣ LFS = Large File service
✦Increases GitHub size limits for individual files from 100

MB to 2GB
✦Cumulative storage purchased in 50 GB data packs
✦Used for anything that isn’t code (data files, restart files, etc)

‣ Transparent to the user
✦When you push to GitHub, any files that are tracked by LFS

will go to a remote server (the LFS Store)
✦The GitHub repo will only contain a pointer to that file
✦When you fetch/pull/clone an LFS-enabled repo from

GitHub, LFS will check to see if you have the large files on
your computer (local LFS cache). If not, it will retrieve
them from the LFS Store as needed.

Using Git-LFS

1) Extension to git
‣ brew install git-lfs

2) See if git-lfs is already enabled for that repo
‣ git lfs track

3) If not already sufficient, then add appropriate tracking patterns
‣ git lfs install # only if step 2 returns nothing
‣ git lfs track *.nc4

4) Add your large files to the repo

5) Make sure your files and patterns are tracked by git
‣ git add .gittattributes
‣ git add * # new files

6) commit, push, pull, fetch, clone and proceed as you would with
any other repo

Git-Flow

A state of mind,
git-flow is

Git Flow is:

‣ A Philosophy

✦ Optimal for Agile Software Development
- Innovation
- Continuous Delivery

‣ A Working Principle

✦ Enforcement of branch naming
conventions soon to come

‣ An Application (extension to git)

✦ Already installed in AMI and Singularity Container

✦ brew install git-flow-avh # (Mac)
✦ sudo apt-get install git-flow # (linux)
✦ https://github.com/petervanderdoes/gitflow-avh

The Git-Flow Manifesto

Vincent Driessen (2010)

Highly Recommended!
Ti
m
e

release
branches masterdevelop hotfixes

feature
branches

Feature
for future

release

Tag

1.0

Major
feature for

next release

From this point on,
“next release”

means the release
after 1.0

Severe bug
fixed for

production:
hotfix 0.2

Bugfixes from
rel. branch

may be
continuously
merged back
into develop

Tag

0.1

Tag

0.2

Incorporate
bugfix in
develop

Only
bugfixes!

Start of
release

branch for
1.0

Author: Vincent Driessen
Original blog post: http://nvie.com/posts/a-succesful-git-branching-model

License: Creative Commons BY-SA

http://nvie.com/posts/a-successful-git-branching-model/

The Git-Flow Manifesto: Takaways

‣ master is for releases only

‣ develop
- Not ready for pubic consumption but compiles and passes all tests

‣ Feature branches
- Where most development happens
- Branch off of develop
- Merge into develop

‣ Release branches
- Branch off of develop
- Merge into master and develop

‣ Hotfix
- Branch off of master
- Merge into master and develop

‣ Bugfix
- Branch off of develop
- Merge into develop

Life Cycle of a Feature branch

1) Enable git flow for the repo
‣ git flow init -d

2) Start the feature branch
‣ git flow feature start newstuff
‣ Creates a new branch called feature/newstuff that branches off of develop

3) Push it to GitHub for the first time
‣ Make changes and commit them locally
‣ git flow feature publish newstuff

4) Additional (normal) commits and pushes as needed
‣ git commit -a
‣ git push

5) Bring it up to date with develop (to minimize big changes on the ensuing pull request)
‣ git checkout develop
‣ git pull origin develop
‣ git checkout feature/newstuff
‣ git merge develop

6) Finish the feature branch (don’t use git flow feature finish)
‣ Do a pull request on GitHub from feature/newstuff to develop
‣ When successfully merged the remote branch will be deleted
‣ git remote update -p
‣ git branch -d feature/newstuff

What if I can’t install
git-flow?

 Just be sure to use the
proper naming and

branching conventions

feature/mybranch
release/mybranch
bugfix/mybranch
hotfix/mybranch

git/GitHub (more JEDI tips)

‣ Follow git-flow naming conventions
✦ Web hook will scold you if you don’t
✦ Git-hooks also available to prevent noncompliant pushes
✦ Most development work occurs in feature branches
✦ git-flow extension can be installed with usual installers

(homebrew, apt-get, yum)
✦ Example: brew install git-flow

‣ Don’t push directly to develop or master
✦ Changes to these branches are handled via pull requests

‣ Use git-LFS for large files

‣ What about forks?
✦ For now, developers can work off the central repo
✦ As the project grows, each parter/collaborator institution will

maintain a fork (merge with central repo as needed)
✦ Forking may also be useful for public releases

Agile Software Development

https://nomad8.com/

‣ 12 Agile Principles

✔

✔

✔ ✔✔

✔ ✔ ✔

Git-Flow helps with many of these
For the rest, we have ZenHub

Agile workflows: ZenHub

Install browser extension
from http://zenhub.com

to see ZenHub tab on
each repo

available for
Chrome, Firefox

Using ZenHub

All GitHub Issues and pull
requests appear on the

Zenhub boards

All ZenHub issues/tasks
appear as GitHub issues

ZenHub Features

‣ Customizable Project boards
✦ Prioritize and organize tasks
✦ Reviews/Feedback
✦ Sprints (Milestones) and Epics

‣ Closely integrated with GitHub
✦ Access boards directly from GitHub repos
✦ ZenHub tasks are GitHub issues and vice versa

‣ Tasks/Issues
✦ Assign up to 10 individuals
✦ Labels, difficulty estimates, etc.
✦ Can be linked to pull requests
✦ Markdown supported (boldface, checklists…)

‣ Monitoring progress
✦ Burndown charts
✦ Velocity tracking
✦ Release reports

- Time estimate to deliver a specified set of features

ZenHub Pipelines

‣ New Issues
✦ Default landing spot
✦ Issues should not stay here long

‣ Backlog
✦ Main “To Do” List
✦ Arrange in order of priority (reviewed regularly by teams)

‣ IceBox
✦ Low-priority items that should be done at some point but do not

require immediate attention

‣ In Progress
✦ Lets others know what you are doing to promote collaboration

and avoid redundancy

‣ Review/QA
✦ Solicit feedback before you mark something as…

‣ Closed

ZenHub Issues/Tasks

Suggestion:
1 unit = 1/2 day
dedicated work

ZenHub Features

‣ Milestones (Sprints)
✦Short-term (~ 2 weeks)
✦Focused work, often on 1-2 repos
✦Deliverables = specific functionality/features

‣ Epics
✦Long-term (indefinite)
✦Typically span multiple repos
✦Deliverables = releases, guiding vision

‣ Workspaces
✦Collect multiple repositories into a common board

Project boards include filters to view only issues associated with Milestones,
Epics or other attributes (assignee, label, repo, release…)

ZenHub: Sprint Retrospective

Sprint Retrospectives
and other agile

workflow components
(Sprint Review,

Release Planning, etc)
are best done face-

to-face, but one could
in principle dedicate
an issue or a pipeline

to solicit further
perspectives

ZenHub: Burndown chart

ZenHub: Release Report

‣ Agile Project Management and Collaborative Workflow
✦git/GitHub
✦git-flow
✦ZenHub

‣ Documentation
✦Sphinx/ReadTheDocs (high-level manuals, how-to’s, etc)
✦Doxygen (low-level code details)
✦JEDI Wiki

Part II: Documentation

Sphinx/ReadtheDocs

https://jointcenterforsatellitedataassimilation-
jedi-docs.readthedocs-hosted.com/en/latest/

Publicly available

Targeted at users as
well as developers

Sphinx/ReadtheDocs

Or, get there from
http://academy.jcsda.org

Sphinx/ReadtheDocs

Sphinx

‣ Sphinx
✦The real workhorse behind the documents
✦Python package
✦Source code written with Restructured text

‣ Distribution plan
✦ReadtheDocs for now to publish
✦Sphinx Source code on GitHub (jedi-docs)
✦Tagged versions of the doc repos will be linked to JEDI

releases

For more info on Sphinx see the corresponding page in the
JEDI documentation, under Developer Tools and Practices

Doxygen

Used in JEDI for:

‣ Documenting functions and subroutines (C++ and F90)

‣ Documenting classes and structures (C++ and F90)

‣ Viewing namespaces and modules

‣ Generating Class Hierarchies

‣ Generating Call diagrams

‣ Any other documentation that involves specific blocks of code

For example Doxygen documentation (fv3-bundle)
See

https://github.com/june2019

Doxygen Implementation Plan

‣ User/Developers (this means you!)
✦Please place appropriate Doxygen comments in source files
✦ (optionally) test functionality by compiling with Doxygen config files

provided by JEDI team (feel free to customize, but please don’t
commit your changes)

- Find Doxyfile (the plan is to have one in the Documents directory
of every repo)

> doxygen
- View results in html directory

‣ JEDI Core Team
✦Will supply the Doxyfile config files
✦Will publish html files for develop and master versions of repos

(generated automatically, triggered by pull requests)
✦Tagged versions linked to releases
✦Please be patient - We’re still working on this

Documenting Fortran Source Code

! ! ——
!> \brief Example function
!!
!! \details **myfunction()** takes a and b as arguments and miraculously creates c.
!! I could add many more details here if I chose to do so. I can even make a list:
!! * item 1
!! * item 2
!! * item 3
!!
!! \date A long, long, time ago: Created by L. Skywalker (JCSDA)
!!
!! \warning This isn't a real function!
!!
subroutine myfunction(a, b, c)
 integer, intent(in) :: a !< this is one input parameter
 integer, intent(in) :: b !< this is another
 real(kind=kind_rea), intent(out) :: c !< and this is the output
 [...]

Documenting C++ Source Code

// ---
/*! \brief Example function
*
* \details **myfunction()** takes a and b as arguments and miraculously creates c.
* I could add many more details here if I chose to do so. I can even make a list:
* * item 1
* * item 2
* * item 3
*
* \param[in] a this is one input parameter
* \param[in] b this is another
* \param[out] c and this is the output
*
* \date A long, long, time ago: Created by L. Skywalker (JCSDA)
*
* \warning This isn't a real function!
*
*/
void myfunction(int& a, int& b, double& c) {
 [...]

Useful Doxygen Commands

‣ \brief

‣ \details

‣ \param

‣ \return

‣ \author

‣ \date

‣ \note

‣ \attention

‣ \warning

‣ \bug

‣ \class <name> [<header-file>]

‣ \mainpage

‣ \f$ … \f$ (inline formula)

‣ \f[… \f] (formula block)

‣ \em (or * … *)

‣ \sa (see also)

‣ \typedef

‣ \todo

‣ \version

‣ \namespace

‣ … (url)

‣ \image

‣ \var

‣ \throws (exception description)

Many more described here:

https://www.stack.nl/~dimitri/doxygen/manual/commands.html

Sample output: “man page”

Corresponding code

// ---
/*! \brief Interpolation test
 *
 * \details **testStateInterpolation()** tests the interpolation for a given
 * model. The conceptual steps are as follows:
 * 1. Initialize the JEDI State object based on idealized analytic formulae
 * 2. Interpolate the State variables onto selected "observation" locations
 * using the getValues() method of the State object. The result is
 * placed in a JEDI GeoVaLs object
 * 3. Compute the correct solution by applying the analytic formulae directly
 * at the observation locations.
 * 4. Assess the accuracy of the interpolation by comparing the interpolated
 * values from Step 2 with the exact values from Step 3
 *
 * The interpolated state values are compared to the analytic solution for
 * a series of **locations** which includes values optionally specified by the
 * user in the "StateTest" section of the config file in addition to a
 * randomly-generated list of **Nrandom** random locations. Nrandom is also
 * specified by the user in the "StateTest" section of the config file, as is the
 * (nondimensional) tolerence level (**interp_tolerance**) to be used for the tests.
[…]

Corresponding code (cont.)

[…]
 *
 * This is an equation:
 * \f[\zeta = \left(\frac{x-x_0}{\lambda}\right)^{2/3} \f]
 *
 * Relevant parameters in the **State* section of the config file include
 *
 * * **norm-gen** Normalization test for the generated State
 * * **interp_tolerance** tolerance for the interpolation test
 *
 * \date April, 2018: M. Miesch (JCSDA) adapted a preliminary version in the
 * feature/interp branch
 *
 * \warning Since this model compares the interpolated state values to an exact analytic
 * solution, it requires that the "analytic_init" option be implemented in the model and
 * selected in the "State.StateGenerate" section of the config file.
 */

Sample output: class hierarchy

Sample output: inheritance, call graphs

Clickable boxes!

Sample output: caller graphs

Note that these traces end in _c (this is a Fortran routine)
Doxygen has trouble with C++ / Fortran binding
Look for corresponding _f90 routine to follow further

Sample output: include diagrams

Can get complicated!

Other documentation

In a few cases, other sorts of
documentation (often pdf) may
be available in the Documents
directory of a repo

Example: oops

Generally, we plan to link to
these pdfs from the Doxygen
pages

JEDI Wiki

Warning: Less polished than ReadtheDocs
(no guarantee that everything is up to date)

✦Targeted at developers
✦Discussion of current progress, issues
✦Resources for code sprints and other events

JEDI Wiki: Weekly Meeting Notes

Resources: GitHub & ZenHub

Lots of Great Github Cheat Sheets
https://education.github.com/git-cheat-sheet-education.pdf
https://jan-krueger.net/git-cheat-sheet-extended-edition
https://patrickzahnd.ch/uploads/git-transport-v1.png

Extensive GitHub documentation & tutorials
https://help.github.com

JEDI Documentation - access link from
https://academy.jcsda.org

ZenHub Guides
https://www.zenhub.com/guides

https://education.github.com/git-cheat-sheet-education.pdf
https://jan-krueger.net/git-cheat-sheet-extended-edition
https://patrickzahnd.ch/uploads/git-transport-v1.png
https://help.github.com
https://academy.jcsda.org
https://www.zenhub.com/guides

Resources: Git-Flow

JEDI Git Flow page
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/
en/latest/developer/developer_tools/getting-started-with-gitflow.html

The Git Flow manifesto (all you need to know about the philosophy):
http://nvie.com/posts/a-successful-git-branching-model/

Git Flow cheat sheet:
https://danielkummer.github.io/git-flow-cheatsheet/

Git avh (a fork of the original, with added features):
https://github.com/petervanderdoes/gitflow-avh

Atlassian git-flow tutorial (philosophy and application):
https://www.atlassian.com/git/tutorials/comparing-workflows/
gitflow-workflow

https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/developer/developer_tools/getting-started-with-gitflow.html
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/developer/developer_tools/getting-started-with-gitflow.html
http://nvie.com/posts/a-successful-git-branching-model/
https://danielkummer.github.io/git-flow-cheatsheet/
https://github.com/petervanderdoes/gitflow-avh
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

Resources: Git-LFS

JEDI Git-LFS page
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-
hosted.com/en/latest/developer/developer_tools/gitlfs.html

GitHub’s Help page:
https://help.github.com/articles/about-git-large-file-storage/

Binaries available for download on:
https://git-lfs.github.com

Or, on a Mac:

brew install git-lfs

Installation? Already installed in the JEDI singularity container

Tutorial:
https://github.com/git-lfs/git-lfs/wiki/Tutorial

Resources: Doxygen

JEDI Doxygen page

https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-
hosted.com/en/latest/developer/developer_tools/doxygen.html

Doxygen Users Manual
http://www.stack.nl/~dimitri/doxygen/manual/index.html

Installation? Already installed in the JEDI singularity container

Binaries available for download on:
http://www.stack.nl/~dimitri/doxygen/download.html

Doxygen Installation (Mac)

brew install doxygen

You may be prompted to also install Doxywizard and
Graphviz - we recommend you say yes to both… If Graphviz
does not install for some reason, you can install it manually:

brew install graphviz

You’ll need this for generating graphs

Similar commands for linux package managers, e.g.
 sudo apt-get doxygen

