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What	is	IODA?

• IODA	is	the	subsystem	in	JEDI	that	provides	access	to	observation	data
• Interface	for	Observation	Data	Access
• Three	levels
• Archive:	long	term	storage,	historic	database
• File:	on	disk,	data	for	one	DA	Cycle
• Memory

• Two	environments
• Plotting,	analyzing,	verifying	on	workstation	or	laptop
• DA	and	other	HPC	applications	(MPI,	threads,	GPUs,	…)



JEDI	Overview
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IODA	Long	Term	Vision

• Look	and	feel	of	a	database
• Select	and	filter	data	on	various	criteria

• Select	observations	within	a	DA	timing	window
• Filter	on	QC	marks,	horizontal	locations,	station	id’s,	etc.

• Converge	on	a	common	file	format	for	holding	observation	data
• A	common	format	would	greatly	facilitate	the	sharing	of	data	and	the	exchange	
science	results

• Likely	that	we	will	adopt	an	existing	database	solution
• We	will	soon	be	evaluating	ECMWF’s	ODB	solution	once	the	ODC	software	(API)	
becomes	available



IODA	Requirements

• IODA	Workshop
• February	2019	at	NRL	in	Monterey,	CA
• Requirements	gathering	effort
• First	round	of	gathering	(ala	agile	methodology)

• Categories	of	requirements	include,	but	not	limited	to:
• Access	to	Data	and	Meta-data

• Data	and	meta-data	are	both	important
• Efficient	query	style	access

• Flexible
• Wide	variety	of	obs types

• Reliable
• Operational	mode	cannot	break	down

• Portable
• Across	hardware	platforms,	programming	languages	and	compilers

• Security
• Protected	data	and	results



IODA	Status
Observation	Type (Instrument) IODA	obs file H(x) Notes

Aircraft ✔ ✔

Radiosonde ✔ ✔

Satwinds ✔ ✔

Additional conventional ✔ ✔ Sfc obs,	ship	obs,	wind	profiler,	etc.

AMSU-A ✔ ✔ n15,	n18,	n19,	metop-a, metop-b,	aqua

AIRS ✔ ✔ aqua

CRIS ✔ ✔ npp

HIRS-4 ✔ ✔ metop-a,	metop-b

IASI ✔ ✔ metop-a,	metop-b

MHS ✔ ✔ n18,	n19,	metop-a,	metop-b

VIIRS AOD ✔ ✔

GNSSRO ✔ ✔

Marine	(retrievals) ✔ ✔ SST,	SSS,	SSH, Insitu Temp,	Seaice (frac,	thick)

Marine	(radiances) ✔ ✔

✔

Completed

✔

In	Progress



IODA	Levels:	Capacity-Speed	Tradeoff

Archive File Memory

CapacityBig Small

SpeedSlow Fast

• Archive
• All	obs types
• All	dates	(decades)

• File
• Specific	obs types
• DA	cycle	begin	- end

• Memory
• Specific	obs types
• Forecast	begin	- end



DA	Flow

Archive

File Memory

• DA	Flow	Specs
• Cycle	over	one	month
• 6	hr.	forecast	increments
• Assimilate	sonde,	
AMSU-A,	sfc winds

1. Retrieve	all	sonde,	AMSU-
A	and	sfc winds	within	the	
one	month	period

2. Loop	over	each	6-hr	
forecast	window	retrieving	
appropriate	sonde,	AMSU-A	
and	sfc winds	as	needed

3. As	DA	flow	progresses,	
store	diagnostics	into	
output	files

1

2
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IODA	Status

• IODA	started	as	a	simple	prototype	and	is	evolving	toward	the	long	term	
vision
• We	are	currently	using	pieces	of	existing	systems	to	mimic	the	database	
style	access	to	the	three	IODA	levels
• Archive

• Data	tanks	from	various	data	centers
• Different	file	types	(BUFR,	netcdf,	specialized	binary)
• Different	methods	of	organizing	data	within	the	file

• QC	code	semantics,	internal	table	structure	and	layout,	etc.

• File
• Netcdf
• Unified	organization	within	the	file

• Memory
• C++	Standard	Data	Structures



IODA	Today
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IODA	Current	Observation	Data	Organization
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Proposed	Change	to	Obs Data	Organization

• Instead	of	2D	tables	in	the	data	organization,	use	n-dimension	arrays
• Accommodate	more	complex	obs type,	such	as	ocean	wave	spectra

• The	number	of	dimensions	is	variable
• Each	dimension	has	an	associated	meta	data	table

• Examples
• Radiosonde

• 2D	array,	dimensions	(nvars,	nlocs)
• Metadata:	variables	(nvars),	locations	(nlocs)

• Radiance
• 3D	array,	dimensions	(nvars,	nlocs,	nchans)
• Metadata:	variables	(nvars),	locations	(nlocs)	and	channels	(nchans)

• Wave	spectra
• 3D	array,	dimensions	(nvars,	nlocs,	nfreqs,	ndirs)
• MetaData:	variables	(nvars),	locations	(nlocs),	frequencies	(nfreqs)	and	directions	(ndirs)



Multi-Dimensioned	Observation	Data
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IODA	Converters

• Set	of	scripts	and	programs	to	convert	various	formats	into	the	target	IODA	
format
• Python	(using	a	common	python	netcdf writer	class)
• Fortran

• The	currently	used	IODA	file	format	is:
• Netcdf

• ODB	will	be	evaluated	when	ODC	interface	becomes	available
• Obs data	organization	from	previous	slides

• Currently,	can	convert:
• Marine	GODAS,	GODAE,	etc.	(mix	of	netcdf and	custom	binary)
• NCEP	prepBUFR
• GNSSRO	raw	BUFR
• GSI	Ncdiag (netcdf diagnostics)
• UK	Met	Office	ODB



IODA	Converters	Current	Design
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IODA	Converters	Target	Design
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IODA	C++	Class	Relationship	with	OOPS

• OOPS	provides	an	abstract	interface	layer
• Templated	classes
• Allows	multiple	implementations	of	underlying	concrete	
classes

• IODA	provides	concrete	classes	that	implement	two	of	the	
OOPS	interface	classes
• ObsVector
• Holds	quantities	such	as	y	and	H(x)

• ObsSpace
• Analogous	to	a	mathematical	space	that	contains	vectors
• Provides	an	interface	to	observation	data	stored	in	files



IODA	Class	Structure
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Multiple	Observation	Spaces	and	Vectors

• The	total	observation	vector	(e.g.,	y)	is	chopped	up	into	pieces	according	
to	observation	type
• Different	observation	types	require	different	algorithms	to	simulate	those	
observations
• Radiosonde
• Radiance
• AOD

• UFO	holds	ObsOperator objects	that	implement	the	various	observation	
simulation	algorithms
• OOPS	manages	these	pieces	with	Observations,	ObsSpaces and	
Observers,	ObsOperators collector	classes
• Corresponding	ObsOperator and	ObsVector objects	are	paired	up	and	OOPS	
chains	these	pieces	together	for	the	cost	function	minimization	step



IODA	Data	Flow
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Interface	with	OOPS

• C++
• Access	to	ObsData array	in	the	data	store
• ObsVector methods

• Argument	is	name	of	ObsData array	(e.g.,	“ObsValue”,	“HofX”)



IODA-OOPS	Interface	Usage

• Data	is	transferred	between	ObsVector and	ObsSpace objects
• The	constructor	of	an	ObsSpace defines	the	variables	that	comprise	the	
observation	vector
• Each	variable	corresponds	to	a	row	in	an	ObsData array
• The	ObsVector may	select	a	subset	of	the	rows	in	the	ObsData array

• Read:	transfer	data	from	ObsSpace to	ObsVector

• Save:	transfer	data	from	ObsVector to	ObsSpace



Interface	with	UFO

• Fortran
• Access	to	an	individual	row	in	the	data	store
• I.e.,	a	row	from	either	of	the	ObsData or	MetaData arrays

• ObsSpace methods

• obss argument	is	a	C	pointer	to	an	ObsSpace object
• group	argument	is	a	Fortran	string	with	the	table	(group)	name

• Eg.,	“ObsValue”,	“HofX”
• vname argument	is	a	Fortran	string	with	the	variable	(row)	name

• Eg.,	“Temperature”,	“Moisture”
• vect argument	is	a	Fortran	1D	array	(vector)



IODA-UFO	Interface	Usage

• It	is	the	client’s	responsibility	to	allocate	memory	for	the	vector	data
• Rows	of	the	tables	are	nlocs in	length



…

ObsSpace Configuration	(YAML)

• Required	keywords
• name
• ObsDataIn
• simulate

• Optional	keywords
• ObsDataOut
• channels



IODA	Next	steps

• Short-term
• Ioda interface	(file	writer)	for	converters
• Expansion	of	data	store	to	multi-dimensioned	observations

• Ocean	wave-spectra,	e.g.

• Longer-term	(this	year)
• Complete	the	design	of	long	term	IODA	subsystem

• Database	design
• Select	a	database	solution	(ODC,	other?)
• Define	how	to	organize	data	within	the	database	file	and	memory	structures

• This	task	will	determine	the	common	file	format	for	IODA
• Create	the	IODA	Archive	Level

• Data	storage	strategy	(cloud)
• Interface	for	archiving	and	retrieving	data
• Tools	to	convert	raw	observation	data	to	the	IODA	common	file	format



Summary

• The	IODA	subsystem	provides	access	to	observation	data	for	
the	OOPS	and	UFO	subsystems	in	JEDI
• Ioda-converters	are	used	to	get	external	obs data	prepared	
for	ingest	into	JEDI
• Ioda is	used	to	store	obs data	with	associated	metadata	
(ObsSpace),	and	to	present	y	and	H(x)	vectors	(ObsVector)	to	
UFO	and	OOPS

•We	have	implemented	a	prototype	interface	that	is	able	to	
handle	observation	data	of	a	variety	of	observation	types	using	
a	common	data	organization
•Want	to	move	this	to	a	database	solution


