
IODA	Subsystem

Joint	Center	for	Satellite	Data	Assimilation	(JCSDA)

JEDI	Academy	- 10-13	June	2019

The	Joint	Effort	for	Data	
assimilation	Integration	(JEDI)



What	is	IODA?

• IODA	is	the	subsystem	in	JEDI	that	provides	access	to	observation	data
• Interface	for	Observation	Data	Access
• Three	levels
• Archive:	long	term	storage,	historic	database
• File:	on	disk,	data	for	one	DA	Cycle
• Memory

• Two	environments
• Plotting,	analyzing,	verifying	on	workstation	or	laptop
• DA	and	other	HPC	applications	(MPI,	threads,	GPUs,	…)



JEDI	Overview

FV3 (GFS+GOES)
(NOAA/NASA)

MPAS
(NCAR)

NEPTUNE
(NRL)

LFRic
(UKMO)

MOM6
(JCSDA/NOAA)

…

Radiosondes

Radiance
(AMSU-A, …)

Aircraft

Aerosols
(AOD)

Sea Ice
(fraction, thickness)

…

A Next-Generation 
Unified 

DA System
(credit: M. Miesch)

• Enables	high	
leverage

• OOPS
• SABER	(BUMP)
• UFO
• CRTM
• IODA

IODA • For	example,	add	
your	model

• Then	you	have	
access	to:
• Obs data
• Forward	
operators

• DA	flows
• Etc.



IODA	Long	Term	Vision

• Look	and	feel	of	a	database
• Select	and	filter	data	on	various	criteria

• Select	observations	within	a	DA	timing	window
• Filter	on	QC	marks,	horizontal	locations,	station	id’s,	etc.

• Converge	on	a	common	file	format	for	holding	observation	data
• A	common	format	would	greatly	facilitate	the	sharing	of	data	and	the	exchange	
science	results

• Likely	that	we	will	adopt	an	existing	database	solution
• We	will	soon	be	evaluating	ECMWF’s	ODB	solution	once	the	ODC	software	(API)	
becomes	available



IODA	Requirements

• IODA	Workshop
• February	2019	at	NRL	in	Monterey,	CA
• Requirements	gathering	effort
• First	round	of	gathering	(ala	agile	methodology)

• Categories	of	requirements	include,	but	not	limited	to:
• Access	to	Data	and	Meta-data

• Data	and	meta-data	are	both	important
• Efficient	query	style	access

• Flexible
• Wide	variety	of	obs types

• Reliable
• Operational	mode	cannot	break	down

• Portable
• Across	hardware	platforms,	programming	languages	and	compilers

• Security
• Protected	data	and	results



IODA	Status
Observation	Type (Instrument) IODA	obs file H(x) Notes

Aircraft ✔ ✔

Radiosonde ✔ ✔

Satwinds ✔ ✔

Additional conventional ✔ ✔ Sfc obs,	ship	obs,	wind	profiler,	etc.

AMSU-A ✔ ✔ n15,	n18,	n19,	metop-a, metop-b,	aqua

AIRS ✔ ✔ aqua

CRIS ✔ ✔ npp

HIRS-4 ✔ ✔ metop-a,	metop-b

IASI ✔ ✔ metop-a,	metop-b

MHS ✔ ✔ n18,	n19,	metop-a,	metop-b

VIIRS AOD ✔ ✔

GNSSRO ✔ ✔

Marine	(retrievals) ✔ ✔ SST,	SSS,	SSH, Insitu Temp,	Seaice (frac,	thick)

Marine	(radiances) ✔ ✔

✔

Completed

✔

In	Progress



IODA	Levels:	Capacity-Speed	Tradeoff

Archive File Memory

CapacityBig Small

SpeedSlow Fast

• Archive
• All	obs types
• All	dates	(decades)

• File
• Specific	obs types
• DA	cycle	begin	- end

• Memory
• Specific	obs types
• Forecast	begin	- end



DA	Flow

Archive

File Memory

• DA	Flow	Specs
• Cycle	over	one	month
• 6	hr.	forecast	increments
• Assimilate	sonde,	
AMSU-A,	sfc winds

1. Retrieve	all	sonde,	AMSU-
A	and	sfc winds	within	the	
one	month	period

2. Loop	over	each	6-hr	
forecast	window	retrieving	
appropriate	sonde,	AMSU-A	
and	sfc winds	as	needed

3. As	DA	flow	progresses,	
store	diagnostics	into	
output	files

1

2

3



IODA	Status

• IODA	started	as	a	simple	prototype	and	is	evolving	toward	the	long	term	
vision
• We	are	currently	using	pieces	of	existing	systems	to	mimic	the	database	
style	access	to	the	three	IODA	levels
• Archive

• Data	tanks	from	various	data	centers
• Different	file	types	(BUFR,	netcdf,	specialized	binary)
• Different	methods	of	organizing	data	within	the	file

• QC	code	semantics,	internal	table	structure	and	layout,	etc.

• File
• Netcdf
• Unified	organization	within	the	file

• Memory
• C++	Standard	Data	Structures



IODA	Today

NCEP ioda
repository

UFO

OOPS

NASA

…

Met	
Office

Diagnostics“Tanks”

Input	Path:
Select	timing	
window

Output	Path:
Write	results	
into	files	for	
downstream	
analysis

ioda-converters
repository

Input	Path:
Extract	obs data	
from	tanks C++	Data	

Structure

Archive File Memory



IODA	Current	Observation	Data	Organization

Location
Meta	Data

Temperature

Moisture

SST

Tb:	Channel 1

Latitude

Longitude

Date/Time

Scan	Angle

ObsValue (y)
ObsError
HofX

nlocs

nvars

Channel	
Frequency

Channel	N
um

ber

Variable	N
am

e

Variable
Meta	Data

ObsData



Proposed	Change	to	Obs Data	Organization

• Instead	of	2D	tables	in	the	data	organization,	use	n-dimension	arrays
• Accommodate	more	complex	obs type,	such	as	ocean	wave	spectra

• The	number	of	dimensions	is	variable
• Each	dimension	has	an	associated	meta	data	table

• Examples
• Radiosonde

• 2D	array,	dimensions	(nvars,	nlocs)
• Metadata:	variables	(nvars),	locations	(nlocs)

• Radiance
• 3D	array,	dimensions	(nvars,	nlocs,	nchans)
• Metadata:	variables	(nvars),	locations	(nlocs)	and	channels	(nchans)

• Wave	spectra
• 3D	array,	dimensions	(nvars,	nlocs,	nfreqs,	ndirs)
• MetaData:	variables	(nvars),	locations	(nlocs),	frequencies	(nfreqs)	and	directions	(ndirs)



Multi-Dimensioned	Observation	Data

T(nlocs)
nlocs

nlocs

nchans Tb(nlocs,	nchans)

nfreqs

Wave	Spectra
(nlocs,	nfreqs,	ndirs)

nlocs

NOTE:	nvars dimension	not	shown	for	simplicity



IODA	Converters

• Set	of	scripts	and	programs	to	convert	various	formats	into	the	target	IODA	
format
• Python	(using	a	common	python	netcdf writer	class)
• Fortran

• The	currently	used	IODA	file	format	is:
• Netcdf

• ODB	will	be	evaluated	when	ODC	interface	becomes	available
• Obs data	organization	from	previous	slides

• Currently,	can	convert:
• Marine	GODAS,	GODAE,	etc.	(mix	of	netcdf and	custom	binary)
• NCEP	prepBUFR
• GNSSRO	raw	BUFR
• GSI	Ncdiag (netcdf diagnostics)
• UK	Met	Office	ODB



IODA	Converters	Current	Design

Original	Files
IODA-Converters

bufr2ioda

gsi-
ncdiag
scripts

profile2ioda

odbapi2iodaMet	Office
(ODB	API)

NCEP
(BUFR)

GSI	
ncDiag
(NetCDF)

GODAE
(Binary)

ObsSpace

IodaIO
(Abstract)

IODA

In
he

rit

NetcdfIO

IODA	Datafile
(netcdf)

NcWriter



IODA	Converters	Target	Design

ObsSpace

IODAIO
(Abstract)

IODA

In
he

rit

DatafileIO

IODA	Datafile

Original	Files

bufr2ioda

gsi-
ncdiag
scripts

profile2ioda

odbapi2ioda
Met	Office
(ODB	API)

NCEP
(BUFR)

GSI	
ncDiag
(NetCDF)

GODAE
(Binary)

IODA-Converters



IODA	C++	Class	Relationship	with	OOPS

• OOPS	provides	an	abstract	interface	layer
• Templated	classes
• Allows	multiple	implementations	of	underlying	concrete	
classes

• IODA	provides	concrete	classes	that	implement	two	of	the	
OOPS	interface	classes
• ObsVector
• Holds	quantities	such	as	y	and	H(x)

• ObsSpace
• Analogous	to	a	mathematical	space	that	contains	vectors
• Provides	an	interface	to	observation	data	stored	in	files



IODA	Class	Structure

ObsSpaceObsVector

ObservationSpace<MODEL>

ObsSpaces<MODEL>

IODA

OOPS

ObsVector<MODEL>

data_

values_

Obs Vector	
Data

spaces_[]

…

…

obsdb_

database_

Obs Database

obsdb_



Multiple	Observation	Spaces	and	Vectors

• The	total	observation	vector	(e.g.,	y)	is	chopped	up	into	pieces	according	
to	observation	type
• Different	observation	types	require	different	algorithms	to	simulate	those	
observations
• Radiosonde
• Radiance
• AOD

• UFO	holds	ObsOperator objects	that	implement	the	various	observation	
simulation	algorithms
• OOPS	manages	these	pieces	with	Observations,	ObsSpaces and	
Observers,	ObsOperators collector	classes
• Corresponding	ObsOperator and	ObsVector objects	are	paired	up	and	OOPS	
chains	these	pieces	together	for	the	cost	function	minimization	step



IODA	Data	Flow

ObsOperator

ObsOperator

ObserversH(x)

ObsVector

x

OOPS
UFO
IODA

Observations

ObsVector

y

ObsVector

Observations

ObsVector

ObsSpaceObs Data

Observer



Interface	with	OOPS

• C++
• Access	to	ObsData array	in	the	data	store
• ObsVector methods

• Argument	is	name	of	ObsData array	(e.g.,	“ObsValue”,	“HofX”)



IODA-OOPS	Interface	Usage

• Data	is	transferred	between	ObsVector and	ObsSpace objects
• The	constructor	of	an	ObsSpace defines	the	variables	that	comprise	the	
observation	vector
• Each	variable	corresponds	to	a	row	in	an	ObsData array
• The	ObsVector may	select	a	subset	of	the	rows	in	the	ObsData array

• Read:	transfer	data	from	ObsSpace to	ObsVector

• Save:	transfer	data	from	ObsVector to	ObsSpace



Interface	with	UFO

• Fortran
• Access	to	an	individual	row	in	the	data	store
• I.e.,	a	row	from	either	of	the	ObsData or	MetaData arrays

• ObsSpace methods

• obss argument	is	a	C	pointer	to	an	ObsSpace object
• group	argument	is	a	Fortran	string	with	the	table	(group)	name

• Eg.,	“ObsValue”,	“HofX”
• vname argument	is	a	Fortran	string	with	the	variable	(row)	name

• Eg.,	“Temperature”,	“Moisture”
• vect argument	is	a	Fortran	1D	array	(vector)



IODA-UFO	Interface	Usage

• It	is	the	client’s	responsibility	to	allocate	memory	for	the	vector	data
• Rows	of	the	tables	are	nlocs in	length



…

ObsSpace Configuration	(YAML)

• Required	keywords
• name
• ObsDataIn
• simulate

• Optional	keywords
• ObsDataOut
• channels



IODA	Next	steps

• Short-term
• Ioda interface	(file	writer)	for	converters
• Expansion	of	data	store	to	multi-dimensioned	observations

• Ocean	wave-spectra,	e.g.

• Longer-term	(this	year)
• Complete	the	design	of	long	term	IODA	subsystem

• Database	design
• Select	a	database	solution	(ODC,	other?)
• Define	how	to	organize	data	within	the	database	file	and	memory	structures

• This	task	will	determine	the	common	file	format	for	IODA
• Create	the	IODA	Archive	Level

• Data	storage	strategy	(cloud)
• Interface	for	archiving	and	retrieving	data
• Tools	to	convert	raw	observation	data	to	the	IODA	common	file	format



Summary

• The	IODA	subsystem	provides	access	to	observation	data	for	
the	OOPS	and	UFO	subsystems	in	JEDI
• Ioda-converters	are	used	to	get	external	obs data	prepared	
for	ingest	into	JEDI
• Ioda is	used	to	store	obs data	with	associated	metadata	
(ObsSpace),	and	to	present	y	and	H(x)	vectors	(ObsVector)	to	
UFO	and	OOPS

•We	have	implemented	a	prototype	interface	that	is	able	to	
handle	observation	data	of	a	variety	of	observation	types	using	
a	common	data	organization
•Want	to	move	this	to	a	database	solution


