
How you
Yes YOU!

Can become a JEDI
Developer too

GitHub, Git-flow, documentation,
pull requests, code reviews…

Outline

I) The way of a JEDI
✦ Agile project management
✦ git and GitHub
✦ git-flow

II) Preparing to contribute
✦ Work from a fork
✦ Make sure your branch is up to

date with develop
✦ Make sure your code is

adequately tested
✦ Make sure your code is

adequately documented

III) Contributing code
✦ Pull requests
✦ Code Reviews

The Way of a JEDI

‣ Collaborative

✦ A Joint Center (JCSDA)
- Partners, collaborators, stakeholders, community

✦ A Joint Effort (JEDI)
- Distributed team of software developers, with

varying objectives and time commitments
‣ Agile

✦Innovative

✦Flexible (future-proof)

✦Responsive to users and developers

✦Continuous delivery of functional software

Agile Software Development

https://nomad8.com/

‣ 12 Agile Principles

Agile Tools

‣ git/GitHub
✦ Version control and Release distribution
✦ Pull requests, Code reviews
✦ Coordination of distributed community of developers

‣ Git-Flow
✦ Innovation
✦ Continuous Delivery

‣ ZenHub
✦ Agile project management
✦ Issue tracking, enhanced code review

‣ Forums: https://forums.jcsda.org
✦ User support, stakeholder feedback

https://forums.jcsda.org

git/GitHub

git/GitHub

git - command line tool
(version control)

GitHub - Web-based
repository management

(branches, releases)

Changes to develop, master
branches handled via

pull requests

Git-Flow

A state of mind,
git-flow is

Git Flow is:

‣ A Philosophy

✦ Optimal for Agile Software Development
- Innovation
- Continuous Delivery

‣ A Working Principle

✦ Enforcement of branch naming
conventions

‣ An Application (extension to git)

✦ Already installed Singularity Container

Git-flow manifesto
http://nvie.com/posts/a-successful-git-branching-model/

Vincent
Driessen

(2010)

The Git-Flow Manifesto: Takaways

‣ master is for releases only

‣ develop
- Not ready for public consumption but compiles and passes all tests

‣ Feature branches
- Where most development happens
- Branch off of develop
- Merge into develop

‣ Release branches
- Branch off of develop
- Merge into master and develop

‣ Hotfix
- Branch off of master
- Merge into master and develop

‣ Bugfix
- Branch off of develop
- Merge into develop

Feature branches should
be focused and short,
with a specific goal

They should exists for
days or weeks, not

months

I) The way of a JEDI
✦ Agile project management
✦ git and GitHub
✦ git-flow

II) Preparing to contribute
✦ Work from a fork
✦ Make sure your branch is up to

date with develop
✦ Make sure your code is

adequately tested
✦ Make sure your code is

adequately documented

III) Contributing code
✦ Pull requests
✦ Code Reviews

Part II: Preparing to contribute

Part II: Preparing to contribute

Part II: Preparing to contribute

First - fork the
repository or

repositories you would
like to work with

This may be a personal
or an institutional fork

Create a feature branch

Set up JCSDA as the develop branch

Create feature branch from JCSDA develop

Implement code changes

Edit the code in the feature branch, commit changes, and
push it to your fork

Continue to make changes, commit them, test them, and push to
your fork. Periodically synchronize with JCSDA develop and

resolve any merge conflicts that may arise

Make sure you’re committing
the files you intend to commit

Add Tests and Documentation

Be sure to add tests that execute the code you added or modified
(For instructions, see Maryam’s lecture)

If you do not, then your code will not pass our CI (CodeCov)
testing and it will not be merged

Also add documentation explaining the purpose of the code, what it
does, how to use it, when to use it, scientific and/or mathematical

background, and known limitations or bugs

‣ Doxygen
✦ Low-level descriptions of functions, classes, subroutines,

etc, embedded directly in the code

‣ Sphinx: http://jedi-docs.jcsda.org
✦ Repository: https://github.com/JCSDA/jedi-docs.git
✦ High-level documentation (context, use cases, theory…)

http://jedi-docs.jcsda.org
https://github.com/JCSDA/jedi-docs.git

Documenting Fortran Source Code

! ! ——
!> \brief Example function
!!
!! \details **myfunction()** takes a and b as arguments and miraculously creates c.
!! I could add many more details here if I chose to do so. I can even make a list:
!! * item 1
!! * item 2
!! * item 3
!!
!! \date A long, long, time ago: Created by L. Skywalker (JCSDA)
!!
!! \warning This isn't a real function!
!!
subroutine myfunction(a, b, c)
 integer, intent(in) :: a !< this is one input parameter
 integer, intent(in) :: b !< this is another
 real(kind=kind_rea), intent(out) :: c !< and this is the output
 [...]

Note
Doxygen has known problems

with object-oriented Fortran and
Fortran/C++ bindings

Documenting C++ Source Code

// ---
/*! \brief Example function
*
* \details **myfunction()** takes a and b as arguments and miraculously creates c.
* I could add many more details here if I chose to do so. I can even make a list:
* * item 1
* * item 2
* * item 3
*
* \param[in] a this is one input parameter
* \param[in] b this is another
* \param[out] c and this is the output
*
* \date A long, long, time ago: Created by L. Skywalker (JCSDA)
*
* \warning This isn't a real function!
*
*/
void myfunction(int& a, int& b, double& c) {
 [...]

Useful Doxygen Commands

‣ \brief

‣ \details

‣ \param

‣ \return

‣ \author

‣ \date

‣ \note

‣ \attention

‣ \warning

‣ \bug

‣ \class <name> [<header-file>]

‣ \mainpage

‣ \f$ … \f$ (inline formula)

‣ \f[… \f] (formula block)

‣ \em (or * … *)

‣ \sa (see also)

‣ \typedef

‣ \todo

‣ \version

‣ \namespace

‣ … (url)

‣ \image

‣ \var

‣ \throws (exception description)

Many more described here:

https://www.stack.nl/~dimitri/doxygen/manual/commands.html

Sample output: “man page”

Corresponding code

// ---
/*! \brief Interpolation test
 *
 * \details **testStateInterpolation()** tests the interpolation for a given
 * model. The conceptual steps are as follows:
 * 1. Initialize the JEDI State object based on idealized analytic formulae
 * 2. Interpolate the State variables onto selected "observation" locations
 * using the getValues() method of the State object. The result is
 * placed in a JEDI GeoVaLs object
 * 3. Compute the correct solution by applying the analytic formulae directly
 * at the observation locations.
 * 4. Assess the accuracy of the interpolation by comparing the interpolated
 * values from Step 2 with the exact values from Step 3
 *
 * The interpolated state values are compared to the analytic solution for
 * a series of **locations** which includes values optionally specified by the
 * user in the "StateTest" section of the config file in addition to a
 * randomly-generated list of **Nrandom** random locations. Nrandom is also
 * specified by the user in the "StateTest" section of the config file, as is the
 * (nondimensional) tolerence level (**interp_tolerance**) to be used for the tests.
[…]

Corresponding code (cont.)

[…]
 *
 * This is an equation:
 * \f[\zeta = \left(\frac{x-x_0}{\lambda}\right)^{2/3} \f]
 *
 * Relevant parameters in the **State* section of the config file include
 *
 * * **norm-gen** Normalization test for the generated State
 * * **interp_tolerance** tolerance for the interpolation test
 *
 * \date April, 2018: M. Miesch (JCSDA) adapted a preliminary version in the
 * feature/interp branch
 *
 * \warning Since this model compares the interpolated state values to an exact analytic
 * solution, it requires that the "analytic_init" option be implemented in the model and
 * selected in the "State.StateGenerate" section of the config file.
 */

Sample output: class hierarchy

Sample output: include, call graphs

Clickable boxes!

Sample output: caller graphs

Note that these traces end in _c (this is a Fortran routine)
Doxygen has trouble with C++ / Fortran binding
Look for corresponding _f90 routine to follow further

Doxygen in JEDI

After you have added doxygen documentation to the source code,
you can generate html doxygen output for a particular repository

by enabling the documentation with ecbuild.

Be sure you have doxygen and graphviz installed
(can install with homebrew, apt, yum, etc)

Doxygen documentation for JEDI components is available on the
academy and JEDI documentation web sites

http://academy.jcsda.org/nov2020/pages/doxygen.html
http://jedi-docs.jcsda.org

You can find the results in the <build>/<repo>/docs/html directory

http://academy.jcsda.org/nov2020/pages/doxygen.html
http://jedi-docs.jcsda.org

JEDI User/Developer Manual

JEDI User/Developer Manual

jedi-docs GitHub Repository

The JEDI documentation is
handled through a GitHub

repository just like any of the
others

https://gitthub.com/JCSDA/jedi-docs

You can fork it, create feature
branches, and submit pull

requests

https://gitthub.com/JCSDA/jedi-docs

jedi-docs GitHub Repository

Documentation is written as
reStructuredText (rst) files

which are converted to html by the

Sphinx

Python documentation generator

https://www.sphinx-doc.org

https://www.sphinx-doc.org

I) The way of a JEDI
✦ Agile project management
✦ git and GitHub
✦ git-flow

II) Preparing to contribute
✦ Work from a fork
✦ Make sure your branch is up to

date with develop
✦ Make sure your code is

adequately tested
✦ Make sure your code is

adequately documented

III) Contributing code
✦ Pull requests
✦ Code Reviews

Pull Request

Pull Request

Pull Request

Pull Request

Pull Request

Pull Request

Pull Request

Make it clear
what was
done and

why

Refer to
forum

discussions if
applicable

JEDI team
will assign

reviewers for
external pull

requests

Pull Request

Make it clear
what was
done and

why

Refer to
forum

discussions if
applicable

JEDI team
will assign

reviewers for
external pull

requests

Pull Request

Make it clear
what was
done and

why

Refer to
forum

discussions if
applicable

JEDI team
will assign

reviewers for
external pull

requests

Pull Request

Make it clear
what was
done and

why

Refer to
forum

discussions if
applicable

JEDI team
will assign

reviewers for
external pull

requests

Pull Request

Make it clear
what was
done and

why

Refer to
forum

discussions if
applicable

JEDI team
will assign

reviewers for
external pull

requests

Pull Requests

‣ Make feature branches short and focused

‣ Fill in the requested information in the template

‣ Explain what was done and why

‣ What does it mean for this modification to be finished?

‣ Refer to relevant conversations (forum threads, issues, etc)

‣ Identify appropriate reviewers

‣ Make sure new/modified code is tested

‣ Make sure new/modified code is documented

‣ Be willing to change your code in response to reviews

‣ Read the Working Principles and Best Practices for
Developers sections of the JEDI Documentation

Code Reviews

Purpose
To ensure that the overall health of the code

(scope, functionality, clarity, efficiency, reliability)
improves over time

Requirements
To be useful, they must be

timely, courteous, informative, constructive, and reasonable
(there is no perfect code, only better code)

Additional Benefits
Sharing knowledge, team building and mentoring,

improving the development process,
imposing a consistent style & coding norms

Questions to ask yourself as a reviewer

‣ Does this improve the overall health of the code?

‣ Is it clear from the title and description what is being done
and why? Does it achieve what it says it does?

‣ Can the desired goal be achieved in a different way that is
more readable, more efficient, or more generic?

‣ Is there extraneous code that should be removed (e.g. debug
print statements, unnecessary include statements…)?

‣ Is the new code adequately tested? Does it pass all tests?

‣ Is the new code adequately documented?

‣ Does this belong in the code base or elsewhere (e.g. library)

‣ Have I read the Working Principles and Best Practices for
Developers sections of the JEDI Documentation?

jedi-docs.jcsda.org

jedi-docs.jcsda.org

Summary

Work from forks, follow git-flow principles

Make sure any code you contribute is well
tested and documented

Submit code through pull requests on
GitHub and anticipate that each PR will be

subject to code reviews and CI testing

Realize that you make be asked to do code
reviews as well

