
How you

Yes YOU!

Can become a JEDI
Developer too

Working Principles

GitHub, Git-flow, documentation,

pull requests, code reviews…

User/Developer Forum

User/Developer Forum

Outline

I) The way of a JEDI

✦ Agile project management

✦ Collaborative

✦ git, GitHub, git-flow

II) Preparing to contribute

✦ Work from a fork

✦ Make sure your branch is up to

date with develop

✦ Make sure your code is

adequately tested

✦ Make sure your code is

adequately documented

III) Contributing code

✦ Pull requests

✦ Code Reviews

The Way of a JEDI

‣ Collaborative

✦ A Joint Center (JCSDA)
- Partners, collaborators, stakeholders, community

✦ A Joint Effort (JEDI)
- Distributed team of software developers, with

varying objectives and time commitments

‣ Agile

✦Innovative

✦Flexible (future-proof)

✦Responsive to users and developers

✦Continuous delivery of functional software

Agile Software Development

https://nomad8.com/

‣ 12 Agile Principles

Agile Software Development

https://nomad8.com/

‣ 12 Agile Principles

Agile Software Development

https://nomad8.com/

‣ 12 Agile Principles

Agile Software Development

https://nomad8.com/

‣ 12 Agile Principles

Agile Software Development

https://nomad8.com/

‣ 12 Agile Principles

Agile Software Development

https://nomad8.com/

‣ 12 Agile Principles

Agile Software Development

https://nomad8.com/

‣ 12 Agile Principles

Agile Software Development

https://nomad8.com/

‣ 12 Agile Principles

Agile Tools

‣ git/GitHub

✦ Version control and Release distribution

✦ Pull requests, Code reviews

✦ Coordination of distributed community of developers

‣ Git-Flow

✦ Innovation

✦ Continuous Delivery

‣ ZenHub

✦ Agile project management

✦ Issue tracking, enhanced code review

‣Forums: https://forums.jcsda.org
✦ User support, stakeholder feedback

https://forums.jcsda.org

git/GitHub

git/GitHub

git - command line tool

(version control)

GitHub - Web-based
repository management

(branches, releases)

Changes to develop, master
branches handled via

pull requests

Git-Flow

A state of mind,

git-flow is

Git Flow is:

‣ A Philosophy

✦ Optimal for Agile Software Development

- Innovation

- Continuous Delivery

‣ A Working Principle

✦ Enforcement of branch naming
conventions

‣ An Application (extension to git)

✦ Already installed Singularity Container

Git-flow manifesto

http://nvie.com/posts/a-successful-git-branching-model/

Vincent
Driessen

(2010)

Life Cycle of a Feature branch

1) Enable git flow for the repo

‣ git flow init -d

2) Start the feature branch

‣ git flow feature start newstuff

‣ Creates a new branch called feature/newstuff that branches off of develop

3) Push it to GitHub for the first time

‣ Make changes and commit them locally

‣ git flow feature publish newstuff

4) Additional (normal) commits and pushes as needed

‣ git commit -a

‣ git push

5) Bring it up to date with develop (to minimize big changes on the ensuing pull request)

‣ git checkout develop

‣ git pull origin develop

‣ git checkout feature/newstuff

‣ git merge develop

6) Finish the feature branch (don’t use git flow feature finish)
‣ Do a pull request on GitHub from feature/newstuff to develop

‣ When successfully merged the remote branch will be deleted

‣ git remote update -p

‣ git branch -D feature/newstuff

Life Cycle of a Feature branch

1) Enable git flow for the repo

‣ git flow init -d

2) Start the feature branch

‣ git flow feature start newstuff

‣ Creates a new branch called feature/newstuff that branches off of develop

3) Push it to GitHub for the first time

‣ Make changes and commit them locally

‣ git flow feature publish newstuff

4) Additional (normal) commits and pushes as needed

‣ git commit -a

‣ git push

5) Bring it up to date with develop (to minimize big changes on the ensuing pull request)

‣ git checkout develop

‣ git pull origin develop

‣ git checkout feature/newstuff

‣ git merge develop

6) Finish the feature branch (don’t use git flow feature finish)
‣ Do a pull request on GitHub from feature/newstuff to develop

‣ When successfully merged the remote branch will be deleted

‣ git remote update -p

‣ git branch -D feature/newstuff

What if I can’t install
git-flow?

 Just be sure to use the
proper naming and

branching conventions

feature/mybranch

release/mybranch

bugfix/mybranch

hotfix/mybranch

The Git-Flow Manifesto: Takaways

‣master is for releases only

‣ develop

- Not ready for public consumption but compiles and passes all tests

‣ Feature branches

- Where most development happens

- Branch off of develop

- Merge into develop

‣ Release branches

- Branch off of develop

- Merge into master and develop

‣Hotfix

- Branch off of master

- Merge into master and develop

‣ Bugfix

- Branch off of develop

- Merge into develop

Feature branches should
be focused and short,
with a specific goal

They should exists for
days or weeks, not

months

I) The way of a JEDI

✦ Agile project management

✦ Collaborative

✦ git, GitHub, git-flow

II) Preparing to contribute

✦ Work from a fork

✦ Make sure your branch is up to

date with develop

✦ Make sure your code is

adequately tested

✦ Make sure your code is

adequately documented

III) Contributing code

✦ Pull requests

✦ Code Reviews

Part II: Preparing to contribute

Part II: Preparing to contribute

Part II: Preparing to contribute

First - fork the
repository or

repositories you would
like to work with

This may be a personal
or an institutional fork

Create a feature branch

Set up JCSDA as the develop branch

Create feature branch from JCSDA develop

Implement code changes

Edit the code in the feature branch, commit changes, and
push it to your fork

Continue to make changes, commit them, test them, and push to
your fork. Periodically synchronize with JCSDA develop and

resolve any merge conflicts that may arise

Make sure you’re committing
the files you intend to commit

Add Tests and Documentation

Be sure to add tests that execute the code you added or modified
(For instructions, see Maryam’s lecture)

If you do not, then your code will not pass our CI (CodeCov)
testing and it will not be merged

Also add documentation explaining the purpose of the code, what it
does, how to use it, when to use it, scientific and/or mathematical

background, and known limitations or bugs

‣ Doxygen

✦ Low-level descriptions of functions, classes, subroutines,

etc, embedded directly in the code

‣ Sphinx: http://jedi-docs.jcsda.org
✦ Repository: https://github.com/JCSDA/jedi-docs.git
✦ High-level documentation (context, use cases, theory…)

http://jedi-docs.jcsda.org
https://github.com/JCSDA/jedi-docs.git

Documenting Fortran Source Code

!"!"##

!$"%&'()*"+,-./0)"*1234(52

!!

!!"%6)4-(07"88.9*1234(52:;88"4-<)7"-"-26"&"-7"-'=1.)247"-26".('-31051709"3')-4)7"3>

!!"?"35106"-66".-29".5')"6)4-(07"@)')"(*"?"3@57)"45"65"75>""?"3-2")A)2".-<)"-"0(74B

!!"8"(4)."C

!!"8"(4)."D

!!"8"(4)."E

!!

!!"%6-4)"F"052=G"052=G"4(.)"-=5B"H')-4)6"&9"I>"J<9K-0<)'":LHJMF;

!!

!!"%K-'2(2="N@(7"(72O4"-"')-0"*1234(52!

!!

71&'514(2)".9*1234(52:-G"&G"3;

"""(24)=)'G"(24)24:(2;""""""""""""""BB"-"!P"4@(7"(7"52)"(2/14"/-'-.)4)'

"""(24)=)'G"(24)24:(2;""""""""""""""BB"&"!P"4@(7"(7"-254@)'

"""')-0:<(26Q<(26R')-;G"(24)24:514;"BB"3"!P"-26"4@(7"(7"4@)"514/14

"""S>>>T

Note

Doxygen has known problems

with object-oriented Fortran and
Fortran/C++ bindings

Documenting C++ Source Code

UU"VVV

U8!"%&'()*"+,-./0)"*1234(52

8

8"%6)4-(07"88.9*1234(52:;88"4-<)7"-"-26"&"-7"-'=1.)247"-26".('-31051709"3')-4)7"3>

8"?"35106"-66".-29".5')"6)4-(07"@)')"(*"?"3@57)"45"65"75>""?"3-2")A)2".-<)"-"0(74B

8"8"(4)."C

8"8"(4)."D

8"8"(4)."E

8

8"%/-'-.S(2T"-"4@(7"(7"52)"(2/14"/-'-.)4)'

8"%/-'-.S(2T"&"4@(7"(7"-254@)'

8"%/-'-.S514T"3"-26"4@(7"(7"4@)"514/14

8

8"%6-4)"F"052=G"052=G"4(.)"-=5B"H')-4)6"&9"I>"J<9K-0<)'":LHJMF;

8

8"%K-'2(2="N@(7"(72O4"-"')-0"*1234(52!

8

8U

A5(6".9*1234(52:(24W"-G"(24W"&G"651&0)W"3;"X

"""S>>>T

Useful Doxygen Commands

‣ \brief

‣ \details

‣ \param

‣ \return

‣ \author

‣ \date

‣ \note

‣ \attention

‣ \warning

‣ \bug

‣ \class <name> [<header-file>]

‣ \mainpage

‣ \f$ … \f$ (inline formula)

‣ \f[… \f] (formula block)

‣ \em (or * … *)

‣ \sa (see also)

‣ \typedef

‣ \todo

‣ \version

‣ \namespace

‣ … (url)

‣ \image

‣ \var

‣ \throws (exception description)

Many more described here:

https://www.stack.nl/~dimitri/doxygen/manual/commands.html

Sample output: “man page”

Corresponding code

UU"VVV

U8!"%&'()*"?24)'/50-4(52"4)74

"8

"8"%6)4-(07"884)74J4-4)?24)'/50-4(52:;88"4)747"4@)"(24)'/50-4(52"*5'"-"=(A)2

"8".56)0>""N@)"3523)/41-0"74)/7"-')"-7"*5005K7B

"8"C>"?2(4(-0(Y)"4@)"L+M?"J4-4)"5&Z)34"&-7)6"52"(6)-0(Y)6"-2-094(3"*5'.10-)

"8"D>"?24)'/50-4)"4@)"J4-4)"A-'(-&0)7"5245"7)0)34)6"[5&7)'A-4(52["053-4(527

"8""""17(2="4@)"=)4\-01)7:;".)4@56"5*"4@)"J4-4)"5&Z)34>""N@)"')7104"(7

"8""""/0-3)6"(2"-"L+M?"])5\-I7"5&Z)34

"8"E>"H5./14)"4@)"35'')34"75014(52"&9"-//09(2="4@)"-2-094(3"*5'.10-)"6(')3409

"8""""-4"4@)"5&7)'A-4(52"053-4(527>

"8"^>"F77)77"4@)"-331'-39"5*"4@)"(24)'/50-4(52"&9"35./-'(2="4@)"(24)'/50-4)6

"8""""A-01)7"*'5."J4)/"D"K(4@"4@)"),-34"A-01)7"*'5."J4)/"E

"8

"8"N@)"(24)'/50-4)6"74-4)"A-01)7"-')"35./-')6"45"4@)"-2-094(3"75014(52"*5'

"8"-"7)'()7"5*"88053-4(52788"K@(3@"(23016)7"A-01)7"5/4(52-009"7/)3(*()6"&9"4@)

"8"17)'"(2"4@)"[J4-4)N)74["7)34(52"5*"4@)"352*(="*(0)"(2"-66(4(52"45"-

"8"'-265.09V=)2)'-4)6"0(74"5*"88_'-265.88"'-265."053-4(527>""_'-265."(7"-075

"8"7/)3(*()6"&9"4@)"17)'"(2"4@)"[J4-4)N)74["7)34(52"5*"4@)"352*(="*(0)G"-7"(7"4@)

"8":2526(.)27(52-0;"450)')23)"0)A)0":88(24)'/R450)'-23)88;"45"&)"17)6"*5'"4@)"4)747>

S`T

Corresponding code (cont.)

S`T

"8

"8"N@(7"(7"-2")a1-4(52B

"8"%*S"%Y)4-"Q"%0)*4:%*'-3X,V,RbcX%0-.&6-c%'(=@4;dXDUEc"%*T

"8

"8"e)0)A-24"/-'-.)4)'7"(2"4@)"88J4-4)8"7)34(52"5*"4@)"352*(="*(0)"(23016)

"8

"8"8"8825'.V=)288"_5'.-0(Y-4(52"4)74"*5'"4@)"=)2)'-4)6"J4-4)

"8"8"88(24)'/R450)'-23)88"450)'-23)"*5'"4@)"(24)'/50-4(52"4)74

"8

"8"%6-4)"F/'(0G"DbCfB"g>"g()73@":LHJMF;"-6-/4)6"-"/')0(.(2-'9"A)'7(52"(2"4@)

"8"*)-41')U(24)'/"&'-23@

"8

"8"%K-'2(2="J(23)"4@(7".56)0"35./-')7"4@)"(24)'/50-4)6"74-4)"A-01)7"45"-2"),-34"-2-094(3

"8"75014(52G"(4"')a1(')7"4@-4"4@)"[-2-094(3R(2(4["5/4(52"&)"(./0).)24)6"(2"4@)".56)0"-26

"8"7)0)34)6"(2"4@)"[J4-4)>J4-4)])2)'-4)["7)34(52"5*"4@)"352*(="*(0)>

"8U

Sample output: class hierarchy

Sample output: include, call graphs

Clickable boxes!

Sample output: caller graphs

Note that these traces end in _c (this is a Fortran routine)

Doxygen has trouble with C++ / Fortran binding

Look for corresponding _f90 routine to follow further

Doxygen in JEDI

After you have added doxygen documentation to the source code,
you can generate html doxygen output for a particular repository

by enabling the documentation with ecbuild.

Be sure you have doxygen and graphviz installed
(can install with homebrew, apt, yum, etc)

Doxygen documentation for JEDI components is available on the
academy and JEDI documentation web sites

You can find the results in the <build>/<repo>/docs/html directory

JEDI User/Developer Manual

JEDI User/Developer Manual

jedi-docs GitHub Repository

The JEDI documentation is
handled through a GitHub

repository just like any of the
others

https://gitthub.com/JCSDA/jedi-docs

You can fork it, create feature
branches, and submit pull

requests

https://gitthub.com/JCSDA/jedi-docs

jedi-docs GitHub Repository

Documentation is written as
reStructuredText (rst) files

which are converted to html by the

Sphinx

Python documentation generator

https://www.sphinx-doc.org

https://www.sphinx-doc.org

I) The way of a JEDI

✦ Agile project management

✦ Collaborative

✦ Git, GitHub, git-flow

II) Preparing to contribute

✦ Work from a fork

✦ Make sure your branch is up to

date with develop

✦ Make sure your code is

adequately tested

✦ Make sure your code is

adequately documented

III) Contributing code

✦ Pull requests

✦ Code Reviews

Pull Request

Pull Request

Pull Request

Pull Request

Pull Request

Pull Request

Pull Request

Make it clear
what was
done and

why

Refer to
forum

discussions if
applicable

JEDI team
will assign

reviewers for
external pull

requests

Pull Request

Make it clear
what was
done and

why

Refer to
forum

discussions if
applicable

JEDI team
will assign

reviewers for
external pull

requests

Pull Request

Make it clear
what was
done and

why

Refer to
forum

discussions if
applicable

JEDI team
will assign

reviewers for
external pull

requests

Pull Request

Make it clear
what was
done and

why

Refer to
forum

discussions if
applicable

JEDI team
will assign

reviewers for
external pull

requests

Pull Request

Make it clear
what was
done and

why

Refer to
forum

discussions if
applicable

JEDI team
will assign

reviewers for
external pull

requests

Pull Requests

‣Make feature branches short and focused

‣Fill in the requested information in the template

‣Explain what was done and why

‣What does it mean for this modification to be finished?

‣Refer to relevant conversations (forum threads, issues, etc)

‣ Identify appropriate reviewers

‣Make sure new/modified code is tested

‣Make sure new/modified code is documented

‣Be willing to change your code in response to reviews

‣Read the Working Principles and Best Practices for
Developers sections of the JEDI Documentation

Code Reviews

Purpose

To ensure that the overall health of the code

(scope, functionality, clarity, efficiency, reliability)
improves over time

Requirements

To be useful, they must be

timely, courteous, informative, constructive, and reasonable
(there is no perfect code, only better code)

Additional Benefits

Sharing knowledge, team building and mentoring,

improving the development process,
imposing a consistent style & coding norms

Questions to ask yourself as a reviewer

Questions to ask yourself as a reviewer

‣Does this improve the overall health of the code?

Questions to ask yourself as a reviewer

‣Does this improve the overall health of the code?

‣ Is it clear from the title and description what is being done
and why? Does it achieve what it says it does?

Questions to ask yourself as a reviewer

‣Does this improve the overall health of the code?

‣ Is it clear from the title and description what is being done
and why? Does it achieve what it says it does?

‣Can the desired goal be achieved in a different way that is
more readable, more efficient, or more generic?

Questions to ask yourself as a reviewer

‣Does this improve the overall health of the code?

‣ Is it clear from the title and description what is being done
and why? Does it achieve what it says it does?

‣Can the desired goal be achieved in a different way that is
more readable, more efficient, or more generic?

‣ Is there extraneous code that should be removed (e.g. debug
print statements, unnecessary include statements…)?

Questions to ask yourself as a reviewer

‣Does this improve the overall health of the code?

‣ Is it clear from the title and description what is being done
and why? Does it achieve what it says it does?

‣Can the desired goal be achieved in a different way that is
more readable, more efficient, or more generic?

‣ Is there extraneous code that should be removed (e.g. debug
print statements, unnecessary include statements…)?

‣ Is the new code adequately tested? Does it pass all tests?

Questions to ask yourself as a reviewer

‣Does this improve the overall health of the code?

‣ Is it clear from the title and description what is being done
and why? Does it achieve what it says it does?

‣Can the desired goal be achieved in a different way that is
more readable, more efficient, or more generic?

‣ Is there extraneous code that should be removed (e.g. debug
print statements, unnecessary include statements…)?

‣ Is the new code adequately tested? Does it pass all tests?

‣ Is the new code adequately documented?

Questions to ask yourself as a reviewer

‣Does this improve the overall health of the code?

‣ Is it clear from the title and description what is being done
and why? Does it achieve what it says it does?

‣Can the desired goal be achieved in a different way that is
more readable, more efficient, or more generic?

‣ Is there extraneous code that should be removed (e.g. debug
print statements, unnecessary include statements…)?

‣ Is the new code adequately tested? Does it pass all tests?

‣ Is the new code adequately documented?

‣Does this belong in the code base or elsewhere (e.g. library)

Questions to ask yourself as a reviewer

‣Does this improve the overall health of the code?

‣ Is it clear from the title and description what is being done
and why? Does it achieve what it says it does?

‣Can the desired goal be achieved in a different way that is
more readable, more efficient, or more generic?

‣ Is there extraneous code that should be removed (e.g. debug
print statements, unnecessary include statements…)?

‣ Is the new code adequately tested? Does it pass all tests?

‣ Is the new code adequately documented?

‣Does this belong in the code base or elsewhere (e.g. library)

‣Have I read the Working Principles and Best Practices for
Developers sections of the JEDI Documentation?

jedi-docs.jcsda.org

jedi-docs.jcsda.org

Summary

Work from forks, follow git-flow principles

Make sure any code you contribute is well
tested and documented

Submit code through pull requests on
GitHub and anticipate that each PR will be

subject to code reviews and CI testing

Realize that you make be asked to do code
reviews as well

