
OOPS Data flow; Interface classes

Joint Center for Satellite Data Assimilation (JCSDA)

JEDI Academy – 21-25 June 2021

The Joint Effort for Data
assimilation Integration (JEDI)

JEDI: Motivations and Objectives

Develop a unified data assimilation system:
- From toy models to Earth system coupled models

- Unified observation (forward) operators (UFO)

- For research and operations (including O2R2O)

- Share as much as possible without imposing one approach (one
system, multiple methodologies/configurations)

HofX Var DA

Model Covariance Obs. Operator

…

FV3MOM6

Uses

Implements

EnKF

Abstract Layer (OOPS)

Obs. Space

NEPTUNE

State

Generic
Algorithms

Abstract
Interfaces …

EDA

UFO IODA

…
Specific
Implementations

Generic
Implementations SABER

Generic Layer

JEDI: Abstraction and Genericity

Abstract,
model-agnostic
DA system

HofX Var DA

Model Covariance Obs. Operator

…

FV3MOM6

Uses

Implements

EnKF

Abstract Layer (OOPS)

Obs. Space

NEPTUNE

State

Generic
Algorithms

Abstract
Interfaces …

EDA

UFO IODA

…
Specific
Implementations

Generic
Implementations SABER

Generic Layer

Abstract,
model-agnostic
DA system

JEDI: Abstraction and Genericity

Separation of concerns
JEDI

• OOPS is independent of the underlying model and physical system.

• The implementations do not know about the high level algorithm:
- All actions driven by the top level code,
- All data, input and output, passed by arguments.

• Interfaces must be general enough to cater for all cases, and detailed
enough to be able to perform the required actions.

HofX Var DA

Model Covariance Obs. Operator

…

Uses

EnKF

Abstract Layer (OOPS)

Obs. SpaceState

Generic
Algorithms

Abstract
Interfaces …

EDA

Separation of concerns

Abstract,
model-agnostic
DA system

Model Covariance Obs. Operator

FV3MOM6

Implements

Abstract Layer (OOPS)

Obs. Space

NEPTUNE

State
Abstract
Interfaces …

UFO IODA

…
Specific
Implementations

Generic
Implementations SABER

Generic Layer

Separation of concerns

Abstract,
model-agnostic
DA system

OOPS Analysis and Design
JEDI

• All data assimilation methods require the same limited number of entities.

• For future (unknown) developments these entities should be easily
reusable.

• These entities are the basic (abstract) classes that define the system.

• No details about how any of the operations are performed, how data is
stored or what the model represents: separation of concerns.

Basic building blocks for DA

What is data assimilation?
Data assimilation is finding the best estimate (analysis) of the state of a
system given a previous estimate of the state (background) and recent
observations of the system.

use variational assimilation and minimize:

𝐽 ∆𝑥 =
1
2
∆𝑥!𝐁"#∆𝑥 +

1
2
𝑦$ − 𝐻 𝑥% + ∆𝑥

!𝐑"# 𝑦$ − 𝐻(𝑥% + ∆𝑥)

use Kalman filter:

∆𝑥&= 𝐁𝐇𝐓 𝐇𝐁𝐇𝐓 + 𝐑 "# 𝑦$ − 𝐻(𝑥%)

Model space: State

𝐽 ∆𝑥 =
1
2
∆𝑥!𝐁"#∆𝑥 +

1
2
𝑦$ − 𝐻 𝑥% + ∆𝑥

!𝐑"# 𝑦$ − 𝐻(𝑥% + ∆𝑥)

∆𝑥&= 𝐁𝐇𝐓 𝐇𝐁𝐇𝐓 + 𝐑 "# 𝑦$ − 𝐻(𝑥%)

Examples: background, analysis, forecast state

Operations allowed on state:
• Input, output (raw or post-processed).
• Move forward in time (using the Model).
• Copy, assign.

From DA point of view no need to know how operations are performed, or how
states are represented and stored.

Model space: Increment

𝐽 ∆𝑥 =
1
2
∆𝑥!𝐁"#∆𝑥 +

1
2
𝑦$ − 𝐻 𝑥% − 𝐇∆𝑥 !𝐑"# 𝑦$ − 𝐻(𝑥%) − 𝐇∆𝑥

∆𝑥&= 𝐁𝐇𝐓 𝐇𝐁𝐇𝐓 + 𝐑 "# 𝑦$ − 𝐻(𝑥%)

Examples: perturbation to a state, analysis increment, ensemble perturbation

Operations allowed on Increments:
• Basic linear algebra operators,
• Evolve forward in time linearly and backwards with adjoint.
• Compute as difference between states, add to state.

Observations

𝐽 ∆𝑥 =
1
2
∆𝑥!𝐁"#∆𝑥 +

1
2
𝑦$ − 𝐻 𝑥% + ∆𝑥

!𝐑"# 𝑦$ − 𝐻(𝑥% + ∆𝑥)

∆𝑥&= 𝐁𝐇𝐓 𝐇𝐁𝐇𝐓 + 𝐑 "# 𝑦$ − 𝐻(𝑥%)

Examples: observation values, model-simulated observation values.

Operations allowed on Observations:
• Input, output.
• Simulate observation given a state (observation operator).
• Copy, assign.

From DA point of view no need to know how operations are performed, or
how observations are represented and stored.

Departures

𝐽 ∆𝑥 =
1
2
∆𝑥!𝐁"#∆𝑥 +

1
2
𝑦$ − 𝐻 𝑥% − 𝐇∆𝑥 !𝐑"# 𝑦$ − 𝐻(𝑥%) − 𝐇∆𝑥

Examples: departures, ensemble perturbations in the observation space.

Operations allowed on Departures
• Basic linear algebra operators,
• Compute as difference between observations, add to observations,
• Compute linear variations in observation equivalent as a result of variations of the

state (linearized observation operator).
• Output (for diagnostics).

Operators

𝐽 𝑥

=
1
2
𝑥(− 𝑥% !𝐁"#(𝑥(− 𝑥%)

+
1
20
)*(

+

𝐻 𝑀$→) 𝑥(− 𝑦)
!
𝐑"# 𝐻 𝑀$→) 𝑥(− 𝑦)

Model operator and its linearized counterpart: 𝑀,𝐌,𝐌𝐓.
Observation operator and its linearized counterpart: 𝐻,𝐇,𝐇𝐓

oops/src/oops/

assimilation DA classes (minimizer, cost functions, local volume solvers,
etc)

base base classes and classes build up on interface classes
(state ensemble, observer, etc)

generic implementations that can be shared by different models/obs
(diagonal obs errors, BUMP background error covariances)

interface interface classes (building blocks from previous
slides, that need to be implemented)

mpi files relevant to mpi communications

runs applications (Variational, HofX, etc)

util utilities (datetime, timers, etc)

oops directory structure

oops/src/oops/

assimilation DA classes (minimizer, cost functions, local volume solvers,
etc)

base base classes and classes that build up on interface classes
(state ensemble, observer, etc)

generic implementations that can be shared by different models/obs
(diagonal obs errors, pseudo model)

interface interface classes (building blocks from previous slides, that
need to be implemented)

mpi files relevant to mpi communications

runs applications (HofX, Variational, etc)

util utilities (datetime, timers, etc)

oops directory structure

oops/src/oops/

assimilation DA classes (minimizer, cost functions, local volume solvers,
etc)

base base classes and classes build up on interface classes
(state ensemble, observer, etc)

generic implementations that can be shared by different models/obs
(diagonal obs errors, BUMP background error covariances)

interface interface classes (building blocks from previous slides, that
need to be implemented)

parallel files relevant to mpi communications

runs applications (HofX, Variational, etc)

util utilities (datetime, timers, etc)

oops directory structure

HofX application (oops/src/oops/runs/HofX4D.h):
• Runs model forecast (possibly with pseudo-model, reading states

from files)
• Computes H(x) for specified observations

The HofX application can also be used to generate observations for
OSSE.

H(x) application

HofX application (oops/src/oops/runs/HofX4D.h): ~50 lines of code:
template <typename MODEL, typename OBS> class HofX4D {
// Setup observation window
// Setup Geometry
// Setup Model
// Setup initial State
// Setup forecast outputs
// Setup observations and observer

// Run observer (includes “running model”, and computing H(x) and QC filters)
// Perturb H(x) if needed (e.g. for OSSE)
// Save H(x) either as observations (if "make obs" == true) or as "hofx”
}

H(x) application

Applications using different models
oops::HofX4D<fv3jedi::Traits, ufo::ObsTraits>

(in fv3-jedi/src/mains/fv3jediHofX.cc)

struct mpas::MPASTraits {

typedef mpas::StateMPAS State;
typedef mpas::IncrementMPAS Increment;

...

}

struct fv3jedi::Traits {
typedef fv3jedi::State State;
typedef fv3jedi::Increment Increment;

...

}
(in fv3-jedi/src/fv3jedi/Utilities/Traits.h)

oops::HofX4D<mpas::MPASTraits, ufo::ObsTraits>

struct ufo::ObsTraits {

typedef ioda::ObsSpace ObsSpace;
typedef ufo::ObsOperator ObsOperator;

...

}
(in ufo/src/ufo/ObsTraits.h)

// Setup observation window

// Setup Geometry

// Setup Model

// Setup initial State

// Setup observations and observer

H(x) application YAML

window begin: 2020-10-01T03:00:00Z
window length: PT6H

geometry:
npx: 13
npy: 13
...

model:
name: ...
...

initial condition:
filename_bkgd: ...
...

forecast length: PT6H

observations:
- obs space:

name: Aircraft
simulated variables: [air_temperature]
...

obs operator:
name: VertInterp

Questions?

HofX Var DA

Model Covariance Obs. Operator

…

Uses

EnKF

Abstract Layer

Obs. SpaceState

Generic
Algorithms

Abstract
Interfaces …

EDA

