
Accessing, Building
and Running JEDI

Laptops, Workstations,
Clusters, Cloud, HPC

Outline

I) Acquire dependencies
✦ JEDI Portability overview
✦ Software containers
✦ HPC environment modules
✦ Cloud

II) Build JEDI
✦ JEDI bundles
✦ CMake, ecbuild

Note: in today’s practicals you
will not need to build JEDI - you

will only run it. But, knowing
how to access, build, and run
JEDI may help you after today

How can I Run JEDI?

‣ Application container
✦ A software container that includes JEDI and all it’s dependencies,

ready to run

‣ Development container
✦ Includes JEDI dependencies - you download and build JEDI yourself

‣ Pre-Made Environment Modules
✦ JEDI dependencies available on Hera, Orion, Discover, S4, Cheyenne,

Gaffney, and the Amazon cloud (through AMIs)
✦ You download and build JEDI yourself

‣Build your own Environment Modules
✦ Jedi-stack build system: https://github.com/JCSDA/jedi-stack
✦ You build JEDI and all of its dependencies

https://github.com/JCSDA/jedi-stack

What is a container?

Container benefits
• Portability
• Reproducibility

- Version control (git)
• Bring your own environment
• Efficiency / workflow

- Develop on laptops, run on
HPC/cloud

- Get new users up and
running quickly

Software container (working definition)
A packaged user environment that can be “unpacked” and used

across different systems, from laptops to cloud to HPC

Hardware

Host Kernel

Container

GNU X

OpenMPI X

…

Container

Clang X

MPICH X

…

Container

Intel X

…

…

https://github.com/jcsda/jedi-stack

JEDI Software Dependencies

‣ Essential
✦ Compilers, MPI
✦ CMake
✦ SZIP, ZLIB
✦ LAPACK / MKL, Eigen 3
✦ NetCDF4, HDF5
✦ udunits
✦ Boost (headers only)
✦ ecbuild, eckit, fckit
✦ bufr

‣ Useful
✦ PNETCDF
✦ Parallel IO
✦ nccmp, NCO
✦ Python tools (netcdf4, matplotlib, cartopy…)
✦ json-schema-validator

Common versions among users
and developers minimize
stack-related debugging

What do the
containers and

modules contain?

Environment Modules

Example: Discover (NCCS)

jedi-stack leverages native compilers and mpi libraries
Other stack components are built from these

Container Technologies

‣ Docker
✦ Main Advantages: industry standard, widely supported,

runs on native Mac/Windows OS
✦ Main Disadvantange: Security (root privileges)

‣Singularity
✦ Main Advantages: Reproducibility, HPC support
✦ Main Disadvantage: Not available on all HPC systems
✦ Preferred platform for scientific applications

JCSDA provides a public ubuntu 18.04 AMI that comes
with Singularity, Charliecloud, and Docker pre-installed

Current containers

‣ Development
✦ gnu-openmpi-dev (D, S, C)
✦ clang-mpich-dev (D, S, C)
✦ intel-oneapi-dev (DIY)

‣Application
✦ Tutorial (S)
✦ intel 19 and 2021 One API (S)

Docker Hub
Sylabs cloud
AWS S3 (public)

Distribution

singularity pull library://jcsda/public/jedi-gnu-openmpi-dev
singularity shell -e jedi-gnu-openmpi_latest.sif

http://data.jcsda.org/pages/containers.html

library://jcsda/public/jedi-gnu-openmpi-dev
http://data.jcsda.org/pages/containers.html

Unified Build System

Tagged jedi-stack releases can be used to build tagged
containers, AMIs, and HPC environment modules, ensuring

common software environments across platforms

Supercontainers!

With a little care, containers can be
run across nodes on HPC systems

with no overhead

 JEDI 3DVar Application
864 MPI tasks, 12M observations

FV3-gfs c192

II: JEDI Build System

The JEDI is code organized into bundles that identify all the GitHub
repositories necessary to build and run the applications

CMake build system: ecbuild = CMake macro package developed and
maintained by ECMWF

CMakeLists.txt file
for fv3-bundle

Building a Bundle

1. Download the bundle repository from GitHub
2. Create a build directory
3. Run ecbuild (CMake) to generate a build system
4. Pull the latest source code from GitHub
5. Compile
6. Run the test suite for the bundle

1
2

3
4
5
6

Running a JEDI Application

Each application just takes a single configuration file as
input, in yaml format

A JEDI Configuration file

A taste of what a
JEDI configuration file

looks like
(you’ll see more in the

other lectures and
activities)

Contributing to JEDI

User/Developer forums
https://forums.jcsda.org

Source code
https://github.com/JCSDA

 Code Contributions handled via
Pull Requests

✦ Work from forks
✦ Use git-flow branch naming

conventions
✦ Document and test your code
✦ Expect Code reviews, CI testing

https://nvie.com/posts/a-successful-
git-branching-model/

https://forums.jcsda.org
https://github.com/JCSDA
https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/

JEDI User/Developer Manual

http://jedi-docs.jcsda.org

http://jedi-docs.jcsda.org

