D5,

WATIONAL

Accessing, Building
and Running JEDI

Laptops, Workstations,
Clusters, Cloud, HPC

I) Acquire dependencies

+ JEDI Portability overview
+ Software containers

+ HPC environment modules
4+ Cloud

Il) Build JEDI

+ JEDI bundles
+ CMake, ecbuild

Note: in today’s practicals you
will not need to build JEDI - you
will only run it. But, knowing
how to access, build, and run
JEDI may help you after today

How can | Run JEDI?

> Application container

4+ A software container that includes JEDI and all it’s dependencies,
ready to run

> Development container
4+ Includes JEDI dependencies - you download and build JEDI yourself

> Pre-Made Environment Modules

+ JEDI dependencies available on Hera, Orion, Discover, S4, Cheyenne,
Gaffney, and the Amazon cloud (through AMIs)
4+ You download and build JEDI yourself

> Build your own Environment Modules

4+ Jedi-stack build system: https:/github.com/JCSDA/jedi-stack
4+ You build JEDI and all of its dependencies

https://github.com/JCSDA/jedi-stack

What is a container?

Software container (working definition)
A packaged user environment that can be “unpacked” and used
across different systems, from laptops to cloud to HPC

(Container benefits \

Portability
Reproducibility

- Version control (git)
Bring your own environment
Efficiency / workflow
. HostKemel | - Develop on laptops, run on
e HpG/cloud

Hardware
- Get new users up and

k running quickly J

Container Container Container

GNU X Clang X Intel X

orerrix || weenx | o

https://github.com/jcsda/jedi-stack

JEDI Software Dependencies

>~ Essential
+ Compilers, MPI What do the

+ CMake containers and
+ SZIP, ZLIB PN
+ LAPACK / MKL, Eigen 3 modules contain?
+ NetCDF4, HDF5

4+ udunits

+ Boost (headers only)

4+ echuild, eckit, fckit
+ bufr Common versions among users
and developers minimize
> Useful stack-related debugging
+ PNETCDF
+ Parallel 10
+ nccmp, NCO

+ Python tools (netcdf4, matplotlib, cartopy...)
4+ json-schema-validator

Environment Modules

Example: Discover (NCCS)

(base) mmiesch@discover34:~> module purge
(base) mmiesch@discover34:~> module load jedi/intel-impi
(base) mmiesch@discover34:~> module list

Curr
1)
2)
3)
4)
5)
6)
7)
8)

ently Loaded Modules:
git/2.24.0)]
git-1fs/2.10.0 10)
jedi-python/3.8.3 11)
comp/gcc/9.2.0 12)
comp/intel/19.1.0.166 13)
jedi-intel/19.1.0.166 14)
szip/2.1.1 15)
zlib/1.2.11 16)

udunits/2.2.26 17)
mpi/impi/19.1.0.166 18)
jedi-impi/19.1.0.166 19)
hdf5/1.12.0 20)
pnetcdf/1.12.1 21)
netcdf/4.7.4 22)
nccmp/1.8.7.0 23)
boost-headers/1.68.0 24)

eigen/3.3.7

bufrlib/11.3.2

cmake/3.17.0
ecbuild/jcsda-3.3.2.jcsda3
eckit/jcsda-1.11.6.jcsda2
nco/4.7.9

pio/2.5.1-debug
jedi/intel-impi/19.1.0.166-v0.4

jedi-stack leverages native compilers and mpi libraries
Other stack components are built from these

Container Technologies

> Docker
+ Main Advantages: industry standard, widely supported, *
runs on native Mac/Windows OS
+ Main Disadvantange: Security (root privileges) docker
> Singularity
+ Main Advantages: Reproducibility, HPC support r

+ Main Disadvantage: Not available on all HPC systems s
4+ Preferred platform for scientific applications \J

amazon JCSDA provides a public ubuntu 18.04 AMI that comes
webservices ~ With Singularity, Charliecloud, and Docker pre-installed

Current containers

> Development
+ gnu-openmpi-dev (D, S, C)
+ clang-mpich-dev (D, 5, C) Docker Hub
4+ intel-oneapi-dev (DIY)

Distribution

AWS S3 (public)
> Application
4+ Tutorial (5)
4+ intel 19 and 2021 One API (S)

singularity pull library://jcsda/public/jedi-gnu-openmpi-dev
singularity shell -e jedi-gnu-openmpi_latest.sif

http://data.jcsda.org/pages/containers.html

library://jcsda/public/jedi-gnu-openmpi-dev
http://data.jcsda.org/pages/containers.html

Unified Build System

& o

[T F

Github AWS CodeBuild Travis CI

jedi-stack Docker Charliecloud |t - Cloud

Vr <YV

Singularity -|- - HPC

Tagged jedi-stack releases can be used to build tagged
containers, AMIs, and HPC environment modules, ensuring
common software environments across platforms

Supercontainers!

-
(@)
|

Native
14 | l ' Container
12 -
3 |
£ 10 -
C
£ ‘ '
o 87
£
c 6-
2
4 -
2 -
0 T T T T
AWS S4 S4-lvy Discover
platform
With a little care, containers can be JEDI 3DVar Application
run across nodes on HPC systems 864 MPI tasks, 12M observations

with no overhead FV3-gfs c192

1l: JEDI Build System

The JEDI is code organized into bundles that identify all the GitHub
repositories necessary to build and run the applications

CMake build system: ecbuild = CMake macro package developed and
maintained by ECMWF

Create project
project(fv3-bundle VERSION 1.0.0 LANGUAGES C CXX Fortran)

CMakelists.txt file
for fv3-bundle

[...]

External (required) observation operators
ecbuild_bundle(PROJECT crtm GIT "https://github.com/jcsda/crtm.git" TAG v2.3-jedi)

Core JEDI repositories

ecbuild_bundle(PROJECT oops GIT "https://github.com/jcsda/oops.git" BRANCH develop UPDATE) CMake
ecbuild_bundle(PROJECT saber GIT "https://github.com/jcsda/saber.git" BRANCH develop UPDATE) Trote-niatform Maka
ecbuild_bundle(PROJECT ioda GIT "https://github.com/jcsda/ioda.git" BRANCH develop UPDATE)
ecbuild_bundle(PROJECT ufo GIT "https://github.com/jcsda/ufo.git"” BRANCH develop UPDATE)

Cross-platform Make

FMS and FV3 dynamical core
ecbuild_bundle(PROJECT fms GIT "https://github.com/jcsda/FMS.git" TAG 1.0.0.jcsda)
ecbuild_bundle(PROJECT fv3 GIT "https://github.com/jcsda/GFDL_atmos_cubed_sphere.git" TAG 1.0.0.jcsda)

fv3—-jedi and associated repositories

ecbuild_bundle(PROJECT femps GIT "https://github.com/jcsda/femps.git" BRANCH develop UPDATE)
ecbuild_bundle(PROJECT fv3-jedi-lm GIT "https://github.com/jcsda/fv3-jedi-linearmodel.git" BRANCH develop UPDATE)
ecbuild_bundle(PROJECT fv3-jedi GIT "https://github.com/jcsda/fv3-jedi.git" BRANCH develop UPDATE)

Building a Bundle

git clone https://github.com/JCSDA/fv3-bundle.git
mkdir build

cd build

ecbuild ../fv3-bundle

make update

make -j4

ctest

1. Download the bundle repository from GitHub

2. Create a build directory

3. Run ecbuild (CMake) to generate a build system
4. Pull the latest source code from GitHub

5. Compile

6. Run the test suite for the bundle

Running a JEDI Application

Each application just takes a single configuration file as
input, in yaml format

Define JEDI bin directory where the executables are found

export jedibin=$HOME/jedi/build/bin

Run the BUMP parameter scripts to produce the B matrix

mpirun -np 6 $jedibin/fv3jedi_parameters.x config/bumpparameters_nicas_gfs.yaml
Run the variational application

mpirun -np 18 $jedibin/fv3jedi_var.x config/4denvar.yaml

Compute the increment for plotting

mpirun -np 6 $jedibin/fv3jedi_diffstates.x config/4denvar-increment.yaml

A JEDI Configuration file

cost function:
cost type: 4D-Ens-Var
analysis variables: [ua,va,T,ps,sphum,ice_wat,lig_wat,o3mr]
window begin: '2018-04-14T21:00:00Z'
window length: PT6H A taSte Of What a

subwindow: PT3H

JEDI configuration file
background:

sta‘Fes: looks like
- filetype: gfs

datapath: /opt/jedi/build/fv3-jedi/test/Data/inputs/gfs_c12/bkg/ (you’ll see more in the
filename_core: 20180414.210000.fv_core.res.nc
filename_trcr: 20180414.210000.fv_tracer.res.nc Other IeCtures and
filename_sfcd: 20180414.210000.sfc_data.nc ii(:ti\’iti‘!!i)
filename_sfcw: 20180414.210000.fv_srf_wnd.res.nc
filename_cplr: 20180414.210000.coupler.res
state variables: [ua,va,T,ps,sphum,ice_wat,liq_wat,o3mr,phis,

slmsk,sheleg, tsea,vtype,stype,vfrac,stc, smc, snwdph,

u_srf,v_srf,f10m]

L]

observations:
- obs space:
name: AMSUA-NOAA19
obsdatain:
obsfile: /opt/jedi/build/fv3-jedi/test/Data/obs/testinput_tier_1/amsua_nl19_obs_2018041500_m.nc4
simulated variables: [brightness_temperature]
channels: 10
obs operator:
name: CRTM
Absorbers: [H20,03]
obs options:
Sensor_ID: amsua_nl9

Contributing to JEDI

Source code
https://github.com/JCSDA

Code Contributions handled via
Pull Requests

+ Work from forks

4+ Use git-flow branch naming
conventions

+ Document and test your code

+ Expect Code reviews, Cl testing

User/Developer forums

https://forums.jcsda.org

https://nvie.com/posts/a-successful-

git-branching-model/

https://forums.jcsda.org
https://github.com/JCSDA
https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/

§8 JEDI Documentation — JEDI [

< C @ O &

JEDI Documentation

Overview

Working Principles

Learning JEDI

Using JEDI

Inside JEDI

Frequently Asked Questions (FAQ)

References

& Read the Docs

readthedocs-hoste [E] 120% v O W N o

(©
I

Docs » JEDI Documentation) Edit on GitHub

http://jedi-docs.jcsda.orqg

JEDI Documentation

Welcome to the Joint Effort for Data assimilation Integration (JEDI)!

JEDI is a unified and versatile data assimilation (DA) system for Earth System
Prediction. The : -

from laptops to
learning DA fun

8 Goa's and code organization - X+

c o 0 & readthedocs-hosted.cor [E] 120% o n O & =

algorithms and d Three categories of background error covariance models are currently implemented

in BUMP:

accommodate NSy

oceanic researc

» The ensemble covariance model is built as a transformed and localized sample

systems. Working Principles covariance matrix:

Learning JEDI

. -1 T o T
JEDI is developcEL] Be=T(T"BTT-L)T

Assimilation,an © Inside JEDI where:
Corporation for, ©JEPIComponents B € R™" is the sample covariance matrix estimated from an ensemble,
improving and a 0O0PS T € R™" is an invertible transformation matrix,

£ SABER L € R™" is the localization matrix,

satellite data in\

BUMP o denotes the Schur product (element-by-element).
rediction systel «» The static covariance model is build with successive parametrized operators:
P)/ 10DA
UFO B, = U,ZCZU;
JEDI is a commu FV3-JEDI
where:
document serve: Configuring JEDI

U, € R™" is a multivariate balance operator,
¥ € R™" is a diagonal matrix containing standard deviations,
C € R™" is a block diagonal (univariate) correlation matrix.

8 Read the D
If you have que sl

http://jedi-docs.jcsda.org

