
Model Interfaces
AMS Jedi Short Course

Introduction

This lecture introduces the concept of the model interface in JEDI. Everything we’ve learnt
about so far is the generic part of the code. This generic code must be implemented for a
specific case. We’ve seen how some of it is implemented for specific observation
operators. Here we learn how to implement it for specific models, whether they be
atmosphere, ocean, land, space weather or otherwise.

It is not necessary to extensively understand the JEDI software to write an interface to a
forecast model. Understanding needs to extend only to the interface classes associated
with the forecast model and then how to implement them for some specific model.

Models being interfaced to JEDI
MODEL TYPE INTERFACE OWNER
UFS / GFS Atmosphere fv3-jedi NOAA-EMC

GEOS Atmosphere fv3-jedi NASA-GMAO

FV3GFS GSDChem Atmospheric chemistry fv3-jedi NOAA-ESRL

GEOS-AERO Atmospheric aerosols fv3-jedi NASA-GMAO

FV3-SAR Regional NWP fv3-jedi NOAA-EMC

FV3-SAR-CMAQ Regional air quality fv3-jedi NOAA-EMC

MPAS Atmosphere mpas NCAR

LFRic Atmosphere lfric Met Office (UK)

Unified Model (UM) Atmosphere um-jedi Met Office (UK)

MOM6 Ocean soca NOAA-EMC

SIS2 Sea ice soca NOAA-EMC

CICE6 Sea ice soca-cice6 NOAA-EMC

NEPTUNE Atmosphere neptune NRL

QG Toy model oops ECMWF

Lorenz 95 Toy model oops ECMWF

ShallowWater Toy model shallow-water NOAA-ESRL

Implementations don’t know which applications they are part of, and the applications don’t know which
model is being used.

Interface classes

Generic (to the model) implementationsModel specific implementations

OOPS abstract applications and interfaces

Forecast 4DVar 4DEnVar

State Increment
Linear
Model

Observation
Operator

EnKF

GFSQG Model GEOS MOM6

EnDA

Observation
Space

H(x)

UFO IODA

Background
Error

SABER

…

…Application
layer

The Model Interface Classes
Class Description
ErrorCovariance Background error covariance model (also implemented in SABER).

Geometry The geometry of the forecast model/background grid.

GeometryIterator Iterator over the grid points, needed only for LETKF applications.

GetValues Interpolation from the model space state to observation locations.

Increment Everything associated with an increment with model variables on the model grid.

LinearModel The tangent linear and adjoint version of the forecast model.

LinearVariableChange Transform between an increment with one set of fields and another.

Localization Model ensemble localization (also implemented in SABER).

Model The actual forecast model.

ModelAuxControl

Classes for dealing with model error.ModelAuxCovariance

ModelAuxIncrement

State Everything associated with the model state.

VariableChange Transform between a state with one set of fields and another with different fields.

Interface class – method (Model Geometry.h)
C++ Model, State, Increment etc.

Fortran Model, State, Increment etc.

Fortran tells C++
what to pass for

this object
Configuration

object reference

Communicator
object reference

C++ to Fortran Binding Files

Most models are written in Fortran so this is where the work is done and data stored.

Geometry.h
(Model C++)

Geometry.cc
(Model C++)

Geometry.interface.h
(Model C++)

Geometry.interface.F90

Geometry.h
(OOPS)

fv3jedi_geometry_mod.f90

For a Fortran based model almost all the
work and memory is here.

TR
AI

TS

Defines the interfaces

Fortran Geometry

Fortran version of the class contains
the actual data structures

Fortran code mimics the interfaces
defined in the Interface class but
developer working in this part of the
code sees no C++.

The create phase likely involves a call
to the internal model routines in
order to generate the grid.

Implementation leads to applications incrementally

ErrorCovariance

Geometry

GetValues

LinearModel

Localization

Model

StateIncrement

You can also think of these classes as generic building blocks for applications:

Available applications

- 3D or ‘nomodel’ H(x)
- 3DVar / 4DEnVar
- Hybrid 3DVar / 4DEnVar
- H(x), forecast and 3DVar-FGAT
- Hybrid-4DVar

Implementation leads to applications incrementally

ErrorCovariance

Geometry

GetValues

LinearModel

Localization

Model

StateIncrement

You can also think of these classes as generic building blocks for applications:

Available applications

- 3D or ‘nomodel’ H(x)
- 3DVar / 4DEnVar
- Hybrid 3DVar / 4DEnVar
- H(x), forecast and 3DVar-FGAT
- Hybrid-4DVar

Implementation leads to applications incrementally

ErrorCovariance

Geometry

GetValues

LinearModel

Localization

Model

StateIncrement

You can also think of these classes as generic building blocks for applications:

Available applications

- 3D or ‘nomodel’ H(x)
- 3DVar / 4DEnVar
- Hybrid 3DVar / 4DEnVar
- H(x), forecast and 3DVar-FGAT
- Hybrid-4DVar

Implementation leads to applications incrementally

ErrorCovariance

Geometry

GetValues

LinearModel

Localization

Model

StateIncrement

You can also think of these classes as generic building blocks for applications:

Available applications

- 3D or ‘nomodel’ H(x)
- 3DVar / 4DEnVar
- Hybrid 3DVar / 4DEnVar
- H(x), forecast and 3DVar-FGAT
- Hybrid-4DVar

Implementation leads to applications incrementally

ErrorCovariance

Geometry

GetValues

LinearModel

Localization

Model

StateIncrement

You can also think of these classes as generic building blocks for applications:

Available applications

- 3D or ‘nomodel’ H(x)
- 3DVar / 4DEnVar
- Hybrid 3DVar / 4DEnVar
- H(x), forecast and 3DVar-FGAT
- Hybrid-4DVar

Forecasts in JEDI

Model::Initialize

Model::Step

Model::Finalize PostProcessor

Model::Model

Model::~Model

Loop over forecasts

Loop over time steps

Model constructor and destructor are called
once per applications.

Model::Initialize and Model::Finalize are
called once per forecast.

Model::Step is called once per timestep per
forecast.

PostProcessor

PostProcessor

Variable changes

B = KbDCDK>
b

�xk = Mtk�1!tkMtk�1!tk�2 . . .Mt0!t1Km�x0

@J

@�x0
= B

�1 (�x0 � �xb)�
KX

k=0

K>
mM

>
k K

>
h H

>
R

�1
k (dk �HKh�xk)

dk = yo
k � h (kh {mt0!tk [km (x0)]})

Incremental hybrid-4DVar involves a number of linear and nonlinear variable transforms:

Variable changes

Sets of variables:

Background: the variables read from the background and used to create the increment.

Analysis (increment): the variables making up the increment and the variables added to the
model variables to create the analysis at the end.

Model: the variables that the model needs and what you will have in the analysis file.

LinearModel: variables needed to drive the linearized version of the forecast model.

B matrix: the variables used in the B matrix, e.g. unbalanced stream function and velocity
potential.

UFO: list of variables (delivered via the GeoVaLs) that the observation operators need.

OBS–MODEL interface

GetValues
Constructor

Observation
Locations

GeoVals

Variables
Observation

operator

Observation
vector

Observation
space

IODA

UFO

MODEL

OOPS

• A key functionality in the model is to prepare the data for the observation operators.

• This is done through the GetValues class, which fills GeoVaLs.

GetValues
Apply Step

Variable names

Data

GetValues

Model Step GetValuesState
(ud,vd,t,delp,q)

Variable
Change

(CRTM Vars)

State
(t,p,surface)

GeoVals
(CRTM)

Variable
Change

(Aircraft Vars)

State
(ua,va,t,q) GetValues

GeoVals
(Aircraft)

…

After each model step the post processor loops over all the observation operators and fills the GeoVaLs (Geophysical
Values at observation Locations). Each GeoVaLs object is stored until the model run finishes and the observation
operators are called.

Building an application driver

Driver
fv3jediVar.cc

OOPS

Geometry

State

Increment

Model

…

Traits

ufo/ioda

fv3jedi_var.x

Model::Class

Adding a new model to JEDI

• Follow an existing model.

• Populate the class methods and data to work for the model grid and fields
that you need.

• Implement OOPS unit tests for each implemented interface class.

• Gradually build the applications, each time adding a test.

Questions?

