
Introduction to JEDI

Joint Center for Satellite Data Assimilation (JCSDA)

AMS Short Course - JEDI Introduction - 10 March 2021

The Joint Effort for Data
assimilation Integration (JEDI)

Reduce duplication of effort between JCSDA partners
- Adding new observations (UFO and IODA)
- Implementation of new DA algorithms (OOPS)

Bring all components of Earth-system in one DA system
- Develop DA algorithms once for all components (OOPS)
- Enable future coupled DA developments (OOPS)

For research and operations (and O2R2O)

JEDI: Motivations and Objectives

Modern DA systems are too complex for any one
person to grasp entirely
- Collaborative developments
- Separation of concerns

Modernize software
- Speed-up future developments
- Ease maintenance
- Increase portability and efficiency

JEDI: Approach

Object Oriented Prediction System (OOPS)

Generic, portable, model-
agnostic DA system

Use object-oriented and
generic programing

Each model implements pre-
defined abstract interfaces

Separation of concerns

Forecast 4D-Var

State Model Covariance Obs.

…

FV3 + GSILorenz MOM6

Uses

…

Implements

EnKF

Abstract Layer - OOPS

Forecast 4D-Var

Model Covariance Obs. Operator

…

FV3MOM6

Uses

Implements

EnKF

Abstract Layer

Obs. Space

NEPTUNE

State

Generic
Algorithms

Abstract
Interfaces …

EDA

UFO IODA

GNSSROCRTM ……
Specific
Implementations

Generic
Implementations SABER

Generic Layer

JEDI: Abstraction and Genericity

OOPS is
complemented
by generic
(shared)
components.

Abstract,
model-agnostic
DA system

JEDI Model Interfaces

Model design

JEDI Y. Trémolet, JCSDA

Between model “steps” OOPS calls
post-processors
- OOPS manages when post-processors

are called
- Post-processing removed from model

code (separation of concerns)

Post-processors isolate data assimilation
from the model (separation of concerns)
- Computing simulated observations H(x)
- Jc-DFI, …

Post-processors do not modify the State

Setup
(lots of stuff)

Timestep

Clean-up
(sometimes)

create(…)

initialize(…)

step(…)

finalize()

destruct()

Models Interfacing

JEDI JCSDA

MODEL TYPE CENTER

FV3GFS (UFS) Atmosphere NOAA-EMC

GEOS Atmosphere NASA-GMAO

FV3GFS GSDChem Atmospheric chemistry NOAA-ESRL

GEOS-AERO Atmospheric aerosols NASA-GMAO

MPAS Atmosphere NCAR

LFRic Atmosphere Met Office (UK)

UM Atmosphere Met Office (UK)

MOM6 Ocean NOAA-EMC

SIS2 Sea ice NOAA-EMC

CICE6 Sea ice NOAA-EMC

NEPTUNE Atmosphere NRL

QG Idealized model ECMWF

Lorenz 95 Idealized model ECMWF

Shallow Water Idealized model NOAA-ESRL

JEDI Observations Interfaces

Unified Forward Operator (UFO)

• Share observation operators between JCSDA partners
and reduce duplication of work
- Taking the model agnostic approach one level down into the

observation operators

• Faster use of new observing platforms
- Regular satellite missions are expensive
- Cube-sat have short expected life time
- Include users and instruments science teams

• Unified Forward Operator (UFO)
- Build a community app-store for observation operators

JEDI JCSDA

UFO Observation “filters”

JEDI JCSDA

• Abstract “observation filters” are called before and after the obs. operator

• Observation filters are generic and have access to
- Observation values and metadata
- Model values at observations locations (GeoVaLs)
- Simulated observation value and diagnostics (for post-filter)
- Their own private data

• Filters are written once and used with many observation types

• Generic filters already exist for:
- Gross error check, background check, blacklisting, thinning…
- Entirely controlled from yaml configuration file(s)

• More filters will be developed as needed
- Generic filters should cover most needs

JEDI Working Practices

Many people, many organizations, many models
How is fast progress possible?

Infrastructure, working practices
Project methodology inspired by Agile/SCRUM
• Adapted to distributed teams and part time members
• Work in small manageable increments with constant feedback

Collaborative environment
• Easy access to up-to-date source code (github)
• Easy exchange of information (zenhub)
• Pull requests and code reviews (all developers actively involved)
• Regular meetings by video
• Code sprints (8-10 developers working together on a specific topic)

Object-oriented programming and independence of code components
(separation of concerns)

Code and repositories

JEDI JCSDA

OOPS

FV3GFS

GEOS

MPAS

LFRic

WRF

MOM6

UFO

IODA

CRTM

SABER

UFO
(Unified Forward
Operator)
The ‘app-store’ of

model-agnostic

observation operators

IODA
(Interface for Observation
Data Access)
Performs all the I/O of the

observations

OOPS
(Object Oriented
Prediction System)
Full data assimilation

generic algorithms

CRTM
(Community Radiative
Transfer Model)
Accurately and efficiently

simulate satellite radiances

SABER
(System-Agnostic
Background Error
Representation)
Generic background error

covariance (incl. BUMP)

CICE5

NEPTUNE

Abstract interfaces (separation of concerns) are the most important aspect of the design

The end of the monolithic gigantic jumble of code

Infrastructure, working practices
• Enforce software quality

- Correctness, coding norms, efficiency

• Continuous Integration, Testing framework
- Toolbox for writing tests
- Automated running of tests (on pull requests)

• Effort on portability
- Flexible build system (ecbuild, cmake-based)
- Automatically run tests with several compilers
- JEDI available in containers (singularity, charliecloud)

• Documentation, training
- Doxygen, sphynx, (readthedocs)
- JEDI Academies, tutorials

Final Comments

Final Comments

JEDI is bringing modern software development technologies and
working practices to the data assimilation community
- The technologies in use are all proven in the software industry
- Changing working habits/practices is the most challenging aspect, it takes time…

In the future joint data assimilation environment:
- Technical infrastructure is shared as much as possible
- Common components (H, B, R…) are made available to all the partners

when/where it makes sense
- Each partner keeps their own applications and choice of components and data

assimilation algorithm they use

The keys to success are separation of concerns and interfaces

