
Model Interfacing
Jedi Academy IV, Monterey CA

26th February 2020

Outline

• Introduction
• Model space classes
• GetValues
• Building an application
• LinkedLists (not presented)

Introduction

OOPS provides the algorithms that combine generic building blocks into applications such
as variational assimilation, forecast, EnKF, FSOI etc.

OOPS (by design) knows nothing about the actual implementation of the building blocks
and carries no information about the underlying data. The classes that need to be
implemented for a specific model are called interface classes.

Often models are written in Fortran so a mixed language approach is required and a
binding between the languages is implemented.

Once the interface to a specific model is ready it can be used to create applications by
passing traits and information about factories.

Models being interfaced to JEDI
MODEL TYPE INTERFACE CENTER

FV3GFS Atmosphere fv3-jedi NOAA-EMC

GEOS Atmosphere fv3-jedi NASA-GMAO

FV3GFS GSDChem Atmospheric chemistry fv3-jedi NOAA-ESRL

GEOS-AERO Atmospheric aerosols fv3-jedi NASA-GMAO

MPAS Atmosphere mpas NCAR

WRF Atmosphere wrf-jedi NCAR

LFRic Atmosphere lfric Met Office (UK)

MOM6 Ocean soca NOAA-EMC

SIS2 Sea ice soca NOAA-EMC

CICE6 Sea ice soca-cice6 NOAA-EMC

NEPTUNE Atmosphere neptune NRL

QG Toy model oops ECMWF

Lorenz 95 Toy model oops ECMWF

ShallowWater Toy model shallow-water NOAA-ESRL

Model space classes

Geometry Class: OOPS vs. FV3-JEDI

OOPS (GENERIC) MODEL (SPECIFIC)

Geometry method

C++ Model, State, Increment etc.

Fortran Model, State, Increment etc.

C++ to Fortran Binding Files

All the model (and UFO) classes follow basically the same file structure for the mixed
C++/Fortran languages:

State.h

State.cc

State.interface.h

State.interface.F90

State.h
(OOPS)

fv3jedi_state_mod.f90

For a Fortran based model almost all the
work and memory is here.

TR
AI

TS

Binding

Integer locating
this geometry

object
Pointer to

configuration
object

Pointer to
communicator

object

Config binding

The interface is constructed once, potentially just by
copying from some other model.

The implementation is pure Fortran and is where the
work is done

Example Fortran interfaces for Geometry

Geometry Class: Fortran Type

Geometry Class: Fortran Methods

Call to dynamical core

Dependency structure

Geometry

State

ErrorCovariance/
Localization

Model

LM

GEOS

GetValues

LinearModel FV3-JEDI-LM

saber

iodaufo

VarChange/
LinVarChange

Poisson solver

Increment

GEOS

GFS

FV3-JEDI-LM
GFS

State and Increment: Methods

State Increment

create
delete
zeros
copy
read
write
gpnorm
rms

change_res

axpy
add_increment
analytic_ic

random
self_add (+=)
self_schur

self_sub (-=)
self_mul (*=)

axpy_inc
axpy_state
dot_prod

diff_states
ug_coord

increment_to_ug
ug_to_increment

dirac

Fields

Example Fortran Field Class

The concept of fields is introduced in order to limit duplicate code across sate and increment.

Some model interfaces implement fields at the C++ level, e.g. qg, l95, soca. Some do so at the Fortran level, e.g.
fv3-jedi, mpas, lfric.

State/Increment variables

State/Increment constructor

Incoming vars are
decided by the user at
run time.

Variables are pre-
programmed but not
hardwired

State/Increment method

Optionally check
same list of fields in
self and rhs

Loop through all
allocated fields. Not
dependent on
variables chosen.

The Forecast Model

• Jedi is designed to work with the Model in-core. That is to say that JEDI will
drive the model through the assimilation window exchanging states as it
goes.

• This is often one of the hardest parts of interfacing JEDI to a particular
forecast model.

• Forecast models have not necessarily been developed in a way that exposes
a stepping method, the model states themselves and with an ability to
‘rewind’, as is needed for outer loops.

• Political issues can also present themselves.

Model class

Factory name

Model class

GEOS

NEMSfv3gfs

Dynamical core only

Pseudo model

Data flow

STATE

MODEL

MODEL

STATE

MODEL STEP
(EXTERNAL)

TRAJ & PPs Can be pointer, move or copy.
Usually a copy to account for
differences in precision

LinearModel class

CREATE

INIT_TL

FINALIZE_TL

DELETE

INIT_AD

FINALIZE_AD

STEP_ADSTEP_TLPer inner
loop

Per outer
loop

Variable changes

B = KbDCDK>
b

�xk = Mtk�1!tkMtk�1!tk�2 . . .Mt0!t1Km�x0

@J

@�x0
= B

�1 (�x0 � �xb)�
KX

k=0

K>
mM

>
k K

>
h H

>
R

�1
k (dk �HKh�xk)

dk = yo
k � h (kh {mt0!tk [km (x0)]})

Incremental hybrid-4DVar involves a number of linear and nonlinear variable transforms:

Variable changes

Sets of variables:

Background: the variables which you end up with an analysis of. Typically chosen to interact well
with the forecast model being restarted.

Control increment: the variables of , chosen based on various considerations.

Model: the variables that the model and linear model need, e.g. staggered winds.

B matrix variables: the variables used in the B matrix, e.g. unbalanced stream function and
velocity potential.

�x0

VarChaC2MFV3JEDI

Increment containing
control variables comes
in, increment with
model variables goes
out. The base class
handles the allocation
and deallocation either
side.

Get Values

In order to maintain the separation of concerns the observation operator is split into a model dependent parts
and model agnostic part.

The model dependent part might involve interpolation, field of view calculations and variable transforms.

The intermediate state after computing the model dependent part of the observation operator are known as
GeoVaLs (Geophysical Values at observation Locations).

These are model states interpolated to observation locations and converted to the variables requested by the
observation operator.

GetValues

yo = h(x)

= hobs [hmod(x)]

GeoV aLs = hmod(x)

GetValues

Fortran class definitions

GetValues

LinearGetValues

GetValues: algorithm

Compute weights for interpolation

Loop over UFO variables

Select case on variable

Convert variable and prepare interpolation

Loop over levels
Interpolate to locations

end (levels)

End (variables)

getValues: prepare state/increment variable

Loop over variables

Flag on whether to
interpolate

Set number of levels
for variable and
interpolation flag.

Transform the
variable if need be

Some variables use
integration or aren’t
float.

ABORT

GeoVals

GeoVaLs are not part of the Model Space but currently have to be allocated by the
model. This is because one of the dimensions is the number of vertical levels. The plan is
to move this to the GeoVaLs constructor at some point and request this from the model
geometry instead.

The model only sees GeoVaLs in GetValues so this is where the allocation occurs. E.g.:

Interpolation

Interpolation is needed in several places in the model interface. It’s required in GetValues for
interpolating to observation locations but also in State and Increment, for example to support data
assimilation algorithms that support increments at varying resolution.

JEDI provides general unstructured interpolation options via BUMP (B Matrix Unstructured Mesh
Package) and via a stand alone unstructured interpolation routine. In the future we also plan to
support interpolation using Atlas. In addition each model can implement their own interpolation
methods.

Generic interpolation: creating weights

Latitudes and longitudes for both BUMP and unstructured interpolation are
unstructured, rank 1 vectors where order is not important. Input lats and lons do not
have to be on the same processor as the output lats and lons.

BUMP interpolation from SABER

Unstructured interpolation from OOPS

Generic interpolation: apply

Future of model interfacing

As development has evolved it has become clear that it should be possible to
make some of the interfacing more generic and share code across models.

MAGIC (Model Agnostic Grid Interface Construct) by Rahul Mahajan explores
the possibility of having some components be generic, or using a base class,
to limit duplicate work across model interfaces.

One possibility is to leverage the capabilities in the Atlas. That way the
Geometry, State and Increment can just be Atlas structures and have identical
source code across interfaces.

This will also enable the possibility of a completely generic GetValues class.

Building an application

Building an application driver

Driver
fv3jediVar.cc

OOPS

Geometry

State

Increment

Model

…

Traits/
Factories

ufo/ioda

If an oops branch with a bug is merged and no one is there to compile
it, does the bug really exist?

oops on its own is just headers requiring a template to be applied to
the interface classes and be passed via traits and factories.

fv3jedi_var.x

fv3jediVar.cc application driver

Include the model traits

Include the factories

Include the main application

Initialization step (FMS etc)

Instantiate factories

Create application object

Execute application

Pass config (YAML)

Run

Inheritance from the base class
Run

This can do generic initialization
such as MPI init and prepare
generic monitoring tools.

In turn inherits eckit::Main.

Execute runs the application
and diagnostics.

Variational.h

Run execute

Receives and application

Calls application execute

Checking of proper run

Output some diagnostics

FV3-JEDI Traits

OOPS level State.h interface

FV3-JEDI Templates passed
in through Traits. Basically
just a list of implemented

classes.

Factory instantiation

Instantiate the change of variable designated by VarChaC2MFV3JEDI. In the YAML
we need to call as “Control2Model”

Factory: the class
VarChaC2MFV3JEDI
is then implemented
as normal.

YAML: choose the
subclass and the
variables to be
allocated.

C++/Fortran binding

Binding: C++ side

GeometryFV3JEDI.cc

GeometryFV3JEDIFortran.h

Binding: Fortran side

fv3jedi_geom_interface_mod.F90

Access to the object is
through a linked list

Integer Key comes in, pointer to an object gets passed.

LinkedList inclusion

At the interface_mod
level the Linked List is
created for the Fortran
version of the object.

linkedList_i.f
contains the list of objects
and linkedList_c.f
contains the methods for
manipulating and
accessing the current
object in the linked list.

linkedList_i.f

Linked list node is where
an object is actually
stored in memory. It also
contains a pointer to the
next element.

Class containing pointer
to the head node.
Methods for accessing
that object.

linkedList_c.f: initilaize

If linked list not
initialized associate
the head node and
set the flags.

linkedList_c.f: add

Key comes in from OOPS. Adding an
object to the linked list so ‘up the
counter’ and set the key.

Then allocate the next element. This is
the actual allocation of memory for the
object.

Associate a pointer to the next element
in the linked list.

linkedList_c.f: get

Pointer comes in which needs to be
associated with the object in the
position in the linked list associated
with the key.

Do while loop sweeps the linked list
until the key matches the point in the
linked list.

Questions?

