
OOPS Model Space
Jedi Academy IV, Monterey CA

26th February 2020

• OOPS consists of a number of generic classes, each designed to handle a specific task or set of
tasks without knowing the kind of model for which data assimilation is being performed.

• Some of these classes require a specific implementation in order to perform their task. Consider
the state or observation operator for example. There are classes to handle these in oops but they
do little more than specify the interfaces without a specific state or observation operator.

• Other classes can have meaning without a specific implementation, e.g. the CostFunction class.
However these classes inevitably make use of other classes with a specific implementation. For
example a cost function uses, among other things, the state class.

• In JEDI we refer to the classes that require specific implementation as interface classes. The
collection of these implemented classes dependent on the forecast model is referred to as the
Model Space.

Introduction

Everywhere in the OOPS code are lines like this that proceed classes, methods, types etc.

This templating (described in other lectures) lets the classes or methods behave a certain way, for a
certain model. MODEL contains what we call model space (and observation space) and is a list of the
ways the interface classes should be templated.

Interfaces to templates

template <typename MODEL>

All forecast model or observation specific classes are wrapped into an interface class

Using the C++ templates this is not strictly necessary but it provides a convenient place to
group all interfaces and make them visible

Each interface class contains a pointer to the actual implementation defined by the “model
trait” and essentially just passes the calls down

The interface layer is also used to instrument the code
Timing statistics
Trace execution

Interface classes are all in oops/src/oops/interface

Interface class

Implementations don’t know which applications they are part of and the applications don’t know which
model is being used.

The power of interface classes

Generic implementationsSpecific implementations

OOPS abstract applications and interfaces

Forecast 4DVar 4DEnVar

State Increment Linear
Model

Observation
Operator

EnKF

GFSQG Model GEOS MOM6

EnDA

Observation
Space

H(x)

UFO IODA

Background
Error

SABER

…

…Application
layer

MAGIC

The Interface Classes

Dependent on Forecast model

• ErrorCovariance
• Geometry
• GetValues
• Increment
• LinearModel
• LinearVariableChange
• Localization
• Model
• ModelAuxControl
• ModelAuxCovariance
• ModelAuxIncrement
• State
• VariableChange

Dependeny on observations (UFO/IODA)

• GeoVals
• LinearObsOperator
• Locations
• ObsAuxControl
• ObsAuxCovariance
• ObsAuxIncrement
• ObsErrorCovariance
• ObservationSpace
• ObsOpertor
• ObsVector

@J

@�x0
= B

�1 (�x0 � �xb)�
KX

k=0

K
>
MM

>
k K

>
hH

>
R

�1
k (dk �HKh�xk)

dk = yo
k � h (kh {mt0!tk [km (x0)]})

B = KbDCDK>
b + L �XX>

�xk = Mtk�1!tkMtk�1!tk�2 . . .Mt0!t1Km�x0

Hybrid 4DVar application

Incremental hybrid-4DVar involves a number of linear and nonlinear variable transforms:

Increment

State

LinearVariableChange

LinearModel

ErrorCovariance

Localization

Class of specific
implementation
(from trait)

Access specific object
(only for use in interface
classes)
Name of method is name
of class in lowercase

Shared pointer to
actual object

Interface class - specification

Defines interfaces of methods

Example of a method in an interface class

Trace method on
entry and exit

Timer will be destructed
when going out of scope
Constructor and
destructor do the work

Method of specific implementation is called, with actual arguments

Interface class - method

Passing the Model Space

#include traits.h
int main(int argc, char ** argv) {

oops::SomeApplication<Traits> app;
app.execute(Config)

}

template <typename MODEL> class SomeApplication {
int execute(const eckit::Configuration & Config) const {

const Geometry<MODEL> resol(Config);
}

template <typename MODEL>
class Geometry {

public:
explicit Geometry(const eckit::Configuration &);
...

private:
boost::shared_ptr<const typename MODEL::Geometry> geom_;

};

Top level main creates
an application object
passing the traits for
the templating.

The application passes
the traits down
creating the interface
objects it needs.

The interface class
creates the concrete
object from the traits.

DRIVER

APPLICATION

INTERFACE

struct Traits {
typedef myModel::Geometry Geometry;

}
TRAITS Model implements a

Geometry class

Setup
(lots of stuff)

Timestep

Clean-up
(sometimes)

Ti
m

e
Lo

op

model.finalize(…)

model.create(…)

model.initialize(…)

model.step(…)

grid.create(…)

model.initialize(…)

Model design: xt=M(x0)

Setup
(lots of stuff)

Timestep

Clean-up
(sometimes)

Ti
m

e
Lo

op

model.finalize(…)

model.create(…)

model.initialize(…)

model.step(…)

grid.create(…)

Model design: post processing

post.initialize(…)
post.process(…)

post.process(…)

post.finalize(…)

The 4D model state is never stored in
memory. Post processors are called
that have access to the model state
but then the model continues and the
intermediate states are not stored.

Examples of post processors:

• Calling the observation operator.
• Saving the (low res) trajectory for

the TLM and adjoint.
• Writing output to file.
• Printing state information to a

stream.

Geometry class

template <typename MODEL>
class State : public util::Printable, private util::ObjectCounter<State<MODEL> > {
public:
static const std::string classname() {return "oops::State";}

/// Constructor, destructor
State(const Geometry_ &, const Variables, const util::dateTime &);
State(const Geometry_ &, const eckit::Configuration &);
State(const Geometry_ &, const State &);
State(const State &);
~State();
State & operator=(const State &);

/// Interfacing
State_ & state() {return *state_;}
const State_ & state() const {return *state_;}

/// Time
const util::DateTime validTime() const {return state_->validTime();}

/// I/O and diagnostics
void read(const eckit::Configuration &);
void write(const eckit::Configuration &) const;
double norm() const;
Geometry_ geometry() const;

void accumul(const double&, const state&)

private:
void print(std::ostream &) const;
boost::scoped_ptr<State_> state_;

};

State class

Increment class

In order to maintain the separation of concerns the observation operator is split into a model dependent parts
and model agnostic part.

The model dependent part might involve interpolation, field of view calculations and variable transforms.

The intermediate state after computing the model dependent part of the observation operator are known as
GeoVaLs (Geophysical Values at observation Locations).

These are model states interpolated to observation locations and converted to the variables requested by the
observation operator.

GetValues

yo = h(x)

= hobs [hmod(x)]

GeoV aLs = hmod(x)

OOPS – UFO – IODA – MODEL: the interface advantage

getValues

Observation
Locations

GeoVals

Variables Observation
operator

Observation
vector

Observation
space

IODA

UFO

MODEL

OOPS

• JEDI/UFO introduces standard interfaces between the model and observation worlds.

• Observation operators are independent of the model, easy sharing, exchange and comparison.

GetValues

Called once per outer loop

Called every time step

Note that this is a branch new class, still in
review. GetValues is moving from the state
and increment.

GetValues

GetValues::GetValues Mode::Step GetValues::~GetValues

GetValues::
fillGeoVaLs

VariableTransform UFO

… …

(Not how the code currently
works but in the plan)

LinearGetValues

Called once per outer loop

Called every time step
every inner loop

Called every nonlinear
time step

Model class

Model class | forecast

ModelBase Factory

Some of the constructors in JEDI use factories. This is a powerful way of constructing objects in JEDI that
allows for run time choice of constructor without lots of messy if statements.

The Model class in JEDI is an example of using a factory.

Pseudo model

Four dimensional data assimilation algorithms require forecasts through the data assimilation
window.

Typically this is done by connecting JEDI to the forecast model and stepping the model in time
while calling the post processors.

Alternatively the forecast can be achieved using IO. In OOPS there is a generic pseudo model
class in development.

Instead of the step method containing a call to the forecast model is call the state.read method
and reads a model state from a previously run forecast.

LinearModel class

ErrorCovariance Class

VariableChange class

LinearVariableChange

