
OOPS Observation Space

Joint Center for Satellite Data Assimilation (JCSDA)

JEDI Academy – 25-28 February 2020

The Joint Effort for Data
assimilation Integration (JEDI)

OOPS Observation Space

• OOPS interfaces related to observations: what and why?
• Dataflow for the Observer postprocessor
• Using different ObsOperators for different observation types
• Configuring Observations

Generic
applications

Interface
layer

Specific
implementations

Forecast 3DVar EDA

State Model Covariance Obs Operator

…

MPASFV3 MOM6

Uses

4DVar

Abstract Layer (OOPS)

Implements

Obs Space

EnKF

IODAUFO

…

…

Generic
applications

Interface
layer

Specific
implementations

Forecast 3DVar EDA

State Model Covariance Obs Operator

…

MPASFV3 MOM6

Uses

4DVar

Abstract Layer (OOPS)

Implements

Obs Space

EnKF

IODAUFO

…

…

OOPS interfaces related to obs:
Data assimilation perspective

! ∆# = 1
2∆#

'()*∆# + 1
2 ,- − / #0 − 1∆# '2)* ,- − /(#0) − 1∆#

or

∆#5= (16 1(16 + 2)* ,- − /(#0)

Observations: vector in the observation space (for example, holding
observation values)

OOPS interfaces related to obs:
Data assimilation perspective

! ∆# = 1
2∆#

'()*∆# + 1
2 ,- − / #0 − 1∆# '2)* ,- − /(#0) − 1∆#

or

∆#5 = (16 1(16 + 2)* ,- − /(#0)

Observations: vector in the observation space (for example, holding
observation values or model simulated observation equivalents)

OOPS interfaces related to obs:
Data assimilation perspective

! ∆# = 1
2∆#

'()*∆# + 1
2 ,- − / #0 − 1∆# '2)* ,- − /(#0) − 1∆#

or

∆#5= (16 1(16 + 2)* ,- − /(#0)

ObsErrorCovariance: matrix representing observation error covariances

OOPS interfaces related to obs:
Data assimilation perspective

! ∆# = 1
2∆#

'()*∆# + 1
2 ,- − / #0 − 1∆# '2)* ,- − /(#0) − 1∆#

or

∆#5= (16 1(16 + 2)* ,- − /(#0)

ObsOperator: observation operator for simulating observation given state

OOPS interfaces related to obs:
Data assimilation perspective

! ∆# = 1
2∆#

'()*∆# + 1
2 ,- − / #0 − 1∆# '2)* ,- − /(#0) − 1∆#

or

∆#5= (16 1(16 + 2)* ,- − /(#0)

ObsOperator: observation operator for simulating observation given state
LinearObsOperator: tangent-linear and adjoint of the observation operator

OOPS interfaces related to obs

ObsVector (Observations)

ObsOperator
LinearObsOperator

ObsErrorCovariance

Observations related classes

ObsOperator related classes

ObsError

OOPS interfaces related to obs:
Observations processing perspective

• Need to have access to observation-related data
(observation values and metadata), efficient I/O, distribution
across processors, etc: ObsSpace

• Quality control is an important aspect for real-world data
assimilation: ObsFilters

• Bias correction is also important: ObsAuxControl,
ObsAuxIncrement, ObsAuxCovariance

OOPS interfaces related to obs

ObservationSpace
ObsVector (Observations)

ObsOperator
LinearObsOperator
ObsFilter
ObsAuxControl
ObsAuxIncrement
ObsAuxCovariance

ObsErrorCovariance

Observations related classes (IODA)

ObsOperator related classes (UFO)

Bias correction related classes (UFO)

QC related classes (UFO)

ObsError, for now using diagonal R
(OOPS)

Using different ObsOperators

• One ObsOperator only processes one ”observation type” (e.g.,
there are separate ObsOperators for radiance and radiosonde)

• To assimilate different observation types, we use multiple
ObsOperator’s and ObsSpace’s.

• This is handled in oops (base):
ObsSpaces class is a vector (array) of ObsSpace

Observations, Departures, ObsVector

• Observations and Departures are OOPS classes that contain
vector (array) of ObsVectors for all ObsSpaces (making it a long
vector size of all observations).

• The algorithms in OOPS use Observations and Departures.
• ObsOperator in UFO use ObsVector, and know nothing about

Observations/Departures or algorithms (separation of concerns).

Generic
applications

Interface
layer

Specific
implementations

Forecast 3DVar EDA

State Model Covariance Obs Operator

…

MPASFV3 MOM6

Uses

4DVar

Abstract Layer (OOPS)

Implements

Obs Space

EnKF

IODAUFO

…

…

Generic
applications

Interface
layer

Specific
implementations

Forecast 3DVar EDA

State Model Covariance Obs Operator

…

MPASFV3 MOM6

Uses

4DVar

Abstract Layer (OOPS)

Implements

Obs Space

EnKF

IODAUFO

…

…

Uses

Interface between Observations and Model

State ! ObsVector
"(!)

Observation operator computes model equivalent in the observation
space.
Possible (obvious) interface:
ObsOperator::simulateObs(const State &,

ObsVector &)

ObsOperator "

Interface between Observations and Model

ObsVector
!(#)

With this interface, ObsOperator becomes model-specific.

One of the JEDI goals:
Share observation operators between JCSDA partners and
reduce duplication of work

ObsOperator !

MODEL

State #

Interface between Observations and Model

ObsVector
ObsOp 1

State
Model 1

State
Model 2

State
Model N

ObsVector
ObsOp 2

ObsVector
ObsOp M

… …

With this design, each model would have to implement all
observation operators it needs: duplication of work

Interface between Observations and Model

ObsVector
!(#)

ObsOperator

MODEL

State # GeoVaLs

UFO

GetValues

(model-aware part) (model-agnostic part)

Each model implements getValues (interpolation of
requested variables).

Observation operators are then independent of the model
and can easily be shared, exchanged, compared

Interface between Observations and Model

ObsVector
!(#)

ObsOperator

MODEL

State # GeoVaLs

UFO

GetValues

(model-aware
obs operator-agnostic)

(model-agnostic
obs operator-aware)

Model (or grid)-aware part: horizontal interpolation of state
variables that ObsOperator needs to compute !(#).
Model-agnostic part: everything that ObsOperator needs to do
after getting model fields interpolated to observation location.

Interface between Observations and Model

ObsVector
!(#)

Interfaces:
GetValues::fillGeoVaLs(const State &, const Locations &,

const Variables &, GeoVaLs &)
ObsOperator::simulateObs(const GeoVaLs &,

ObsVector &)

ObsOperator

MODEL

State # GeoVaLs

UFO

GetValues

(model-aware part) (model-agnostic part)

Interface between Observations and Model

ObsVector
ObsOp 1

State
Model 1

State
Model 2

State
Model N

ObsVector
ObsOp 2

ObsVector
ObsOp M

… …

GeoVaLs

With this design, each model only has to implement GetValues,
and the observation operators can be shared by many models.

ObservationSpace
ObsVector

GeoVaLs
Locations
ObsOperator
LinearObsOperator
ObsFilter
ObsAuxControl
ObsAuxIncrement
ObsAuxCovariance

ObsErrorCovariance

Observations related classes (IODA)

ObsOperator related classes (UFO)

Bias correction related classes (UFO)

QC related classes (UFO)

ObsError, for now using diagonal R (OOPS)

OOPS interfaces related to obs

Observer postprocessor

initialize

processing

finalize

• Setup variables to be requested from the
model (everything that is needed for
ObsOperator, ObsBias and ObsFilters)

• Allocate GeoVaLs for the full assimilation
window

• Fill in GeoVaLs for the obs within the
current time window

• Run all Prior Filters
• Calculate H(x)
• Run all Posterior Filters

Observations section of yaml file
ObsTypes:
- ObsSpace: # required
ObsOperator: # required
Filters:
Covariance: # required when doing DA
ObsBias:
ObsBiasCovariance:

- ObsSpace:
ObsOperator:
Filters:
Covariance:

