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JEDI: Motivations and Objectives
Develop a unified data assimilation system:
- From toy models to Earth system coupled models

- Unified observation (forward) operators (UFO)

- For research and operations (including O2R2O)

- Share as much as possible without imposing one approach (one 
system, multiple methodologies/configurations)

Objective of this talk: How is such a system designed?



Basic Building Blocks
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OOPS Analysis and Design
JEDIY. Trémolet, JCSDA

• All data assimilation methods require the same limited number of entities.

• For future (unknown) developments these entities should be easily 
reusable.

• These entities are the basic (abstract) classes that define the system.

• No details about how any of the operations are performed, how data is 
stored or what the model represents: separation of concerns.



Basic building blocks for DA

What is data assimilation?
Data assimilation is finding the best estimate (analysis) of the state of a 
system given a previous estimate of the state (background) and recent 
observations of the system.

use variational assimilation and minimize:
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use Kalman filter:
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Model space: State
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Examples: background, analysis, forecast state

Operations allowed on state:
• Input, output (raw or post-processed).
• Move forward in time (using the model). 
• Copy, assign.

From DA point of view no need to know how operations are performed, or how 
states are represented and stored.



Model space: Increment
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Examples: analysis increment, ensemble perturbation

Operations allowed on Increments:
• Basic linear algebra operators,
• Evolve forward in time linearly and backwards with adjoint. 
• Compute as difference between states, add to state.



Observations
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Examples: observation values, model-simulated observation values.

Operations allowed on Observations:
• Input, output.
• Simulate observation given a state (observation operator).
• Copy, assign.

From DA point of view no need to know how operations are performed, or 
how observations are represented and stored.



Observations
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Examples: observation values, model-simulated observation values.

Operations allowed on Observations:
• Input, output.
• Simulate observation given a state (observation operator).
• Copy, assign.

From Observations point of view no need to know how the observations will 
be used (to compute H(x), in the variational, or Kalman filter assimilation).



Departures

! ∆# = 1
2∆#
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Examples: departures, ensemble perturbations in the observation space.

Operations allowed on Departures
• Basic linear algebra operators,
• Compute as difference between observations, add to observations,
• Compute linear variations in observation equivalent as a result of variations of the 

state (linearized observation operator).
• Output (for diagnostics).



Covariance matrices

! ∆# = 1
2∆#
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Examples: background error covariance, observation error covariance (two 
different interfaces in OOPS)

Operations allowed on Covariance matrices:
• Setup
• Multiply by matrix (and possibly its inverse)



Operators
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Model operator and its linearized counterpart: 5,;,;<.
Observation operator and its linearized counterpart: 4,=,=<



OOPS Analysis and Design
JEDIY. Trémolet, JCSDA

• All data assimilation methods require the same limited number of entities.

• For future (unknown) developments these entities should be easily 
reusable.

• These entities are the basic (abstract) classes that define the system.

• No details about how any of the operations are performed, how data is 
stored or what the model represents: separation of concerns.



OOPS Analysis and Design
JEDIY. Trémolet, JCSDA

• OOPS is independent of the underlying model and physical system.

• Flexibility (including yet unknown future development) requires that this 
goes both ways.

• The components do not know about the high level algorithm being run: 
- All actions driven by the top level code,
- All data, input and output, passed by arguments.

• Interfaces must be general enough to cater for all cases, and detailed 
enough to be able to perform the required actions.
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Separation of concerns
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Interface classes
JEDIY. Trémolet, JCSDA

All model or observation specific classes are wrapped into        
an interface class
- Using the C++ templates this is not strictly necessary but provides a 

convenient place to group all interfaces and make them visible

Each interface class contains a (smart) pointer to the actual 
implementation in the “model trait” and passes calls down

The interface layer is also used to instrument the code
- Timing statistics
- Trace execution

Interface classes are all in oops/src/oops/interface



oops/src/oops/

assimilation DA classes (minimizer, cost functions, etc)

base base classes and classes build up on interface classes 
(state ensemble, observer, etc)

generic implementations that can be shared by different models/obs
(diagonal obs errors, BUMP background error covariances)

interface       interface classes (building blocks from previous 
slides, need to be implemented)

parallel files relevant to mpi communications

runs applications (Variational, HofX, EDA, etc)

util utilities (datetime, timers, etc)

oops directory structure
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Data Assimilation Algorithms



Data assimilation algorithms

• Variational:
– 3DVar
– 4DVar
– weak-constraint 4DVar
– 4DEnsVar

• EDA (ensemble of variational data assimilations)
• Local Ensemble Transform Kalman Filter (work in 

progress)
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Involves running model for !$ and !' steps

Weak constraint 4DVar



Cost Function Design
! " = !$ + !& + !'

• Naive approach:
- One object for each term of the cost function.
- Compute each term (or gradient) and add them together.
- Problem: The model is run several times (Jo, Jc)

• Another naive approach:
- Run the model once and store the full 4D state.
- Compute each term (or gradient) and add them together.
- Problem: The full 4D state is too big (for operational use).



Cost Function Design
! " = !$ + !& + !'

• A feasible approach:
- Run the model once.
- Compute each term (gradient) as the model is running (in the 

postprocessor).
- Add all the terms together.



Model forecast
JEDIY. Trémolet, JCSDA

Between model “steps” OOPS calls 
postprocessors
- OOPS manages when post-processors 

are called
- Post-processing removed from model 

code (separation of concerns)

Post-processors isolate data assimilation 
from the model (separation of concerns)
- Computing simulated observations H(x)
- Jc-DFI, …

Post-processors do not modify the State

Post::finalize(…)
Model::finalize(…)

Setup

Timestep

Clean-up

Model::initialize(…)
Post::initialize(…)

Model::step(…)
Post::process(…)



Post Processors
• PostProcessors are called regularly during model integration  

- The presence or not of post processing does not affect the forecast
- PostProcessors isolate the model code from many other unrelated 

aspects (separation of concerns)
• Examples:

- Output of forecast fields
- Generation of products for users
- Computation of filtered state (for DFI)
- Generation of trajectory for linearized models
- Generation of simulated observations
- Diagnostics



Cost Function Design
• One class for each term (more flexible).
• Call a method on each object on the fly while the model is running.

- Uses the PostProcessor structure.
- Finalize each term and add the terms together at the end.
- Saving the model linearization trajectory is also handled by a 

PostProcessor.
• Each formulation derives from an abstract CostFunction base class.

- Code duplication: it was decided to keep 3D-Var and 4D-Var for 
readability.

• The terms can be re-used (or not), 4D-En-Var was added in a few hours.
- OO is not magic and will not solve scientific questions by itself.
- Scientific questions (localization) remain but scientific work can start.
- Weeks of work would have been necessary in traditional systems.



To be continued tomorrow:
From Abstract to Concrete


